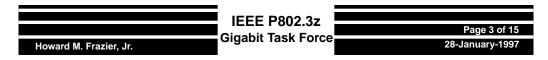


# Link Configuration of Pause Function

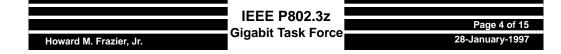
Howard M. Frazier, Jr. Cisco Systems, Inc. Workgroup Business Unit 28-January-1997




### Outline

- Background
- Issues
- Suggested Remedy
- Analysis
- Mismatch Handling
- Summary




#### Background

- At the Vancouver meeting of IEEE P802.3z, the Task Force adopted a motion to include a minimal specification for asymmetric flow control to permit operation of Buffered Distributors
- The Task Force also received a presentation which described a proposal for configuring asymmetric flow control
- This proposal defined two bits in the link configuration word
  - One bit was named "Pause", and defined to have the same meaning as the "Pause Operation for Full-Duplex Links" bit in the clause 28 Auto-negotiation base link code word (as modified by 802.3x)
  - The second bit was named "ASYM\_DIR", and if ASYM\_DIR was set, the meaning of the "Pause" bit would be modified to indicate asymmetric configurations
- The proposal also contained a table reflecting the 16 possible combinations of "Pause" and ASYM\_DIR that could be exchanged by the two ends of a link



#### Background

- I assume that a goal of the proposal was to maintain compatibility with the clause 28 definition (as modified by 802.3x) of the base link code word
- A virtue of this approach is that asymmetric flow control negotiation could conceivably be applied to 10/100BASE-T full duplex links
  - It was not stated, but possibly assumed, that the "Pause" and ASYM\_DIR bits would be assigned to the same bit positions in the 1000BASE-X link configuration word that they would occupy in the clause 28 base link code word



#### Issues

- This approach has disadvantages
- The interpretation of the "Pause" and ASYM\_DIR bits is non-intuitive, and requires extra logic to resolve, extra words to specify, and extra effort to configure
- The approach cannot meet the assumed goal of compatibility with clause 28 Auto-negotiation
  - "legacy" devices would not parse ASYM\_DIR, and would not realize that, when set, this bit modifies the behavior of the "Pause" bit
- Rich Taborek's proposal for the format of the Link Configuration code word assigned two bits (7:8) to PS1 and PS2, respectively
  - This would be in conflict with the assumed goal of the "Pause" + ASYM\_DIR proposal, since the "Pause Operation for Full-Duplex Links" bit in clause 28 is assigned to bit 10 of the base link code word



### **Suggested Remedy**

- Use two bits: Pause(t) and Pause(r)
  - Pause(t) = 1 indicates that the device might transmit Pause frames
  - Pause(r) = 1 indicates that the device can distinguish Pause frames, and implements the Pause function
  - Pause(t) = 0 indicates that the device will not transmit Pause frames
  - Pause(r) = 0 indicates that the device cannot distinguish Pause frames, and does not implement the Pause function
- Assign Pause(t), Pause(r) to bits 7,8 of the Link Configuration word

#### Suggested Remedy (cont)

There are four possible combinations of the two bits, which can be discussed using the short hand:

| Pause(t) | Pause(r) | Shorthand | Description                             |
|----------|----------|-----------|-----------------------------------------|
| 0        | 0        | N         | Won't transmit them, can't receive them |
| 0        | 1        | R         | Won't transmit them, can receive them   |
| 1        | 0        | Т         | Might transmit them, can't receive them |
| 1        | 1        | В         | Might transmit them, can receive them   |

- Table 1—Shorthand Notation for Meaning of Pause(t) and Pause(r)
- Each end of the link can resolve the configuration based on the simple formulae:
  - Allowed\_to\_transmit\_Pause = local\_Pause(t) & partner\_Pause(r)
  - Expect\_to\_receive\_Pause = local\_Pause(r) & partner\_Pause(t)



## Suggested Remedy (cont)

- Consider the 16 possible cases that can occur between a local device and a link partner
- Table 2 shows what each end advertises
  - Local Advertise and Partner Advertise
- and the resulting Link Configuration
  - Local Config and Partner Config

#### Proposal

| Case | Local Advertise | Partner Advertise | Local Config | Partner Config |
|------|-----------------|-------------------|--------------|----------------|
| а    | N               | Ν                 | Ν            | Ν              |
| b    | N               | R                 | N            | N              |
| с    | N               | Т                 | N            | N              |
| d    | N               | В                 | N            | N              |
| e    | R               | Ν                 | Ν            | Ν              |
| f    | R               | R                 | Ν            | N              |
| g    | R               | Т                 | R            | ← Т            |
| h    | R               | В                 | R            | ← Т            |
| i    | Т               | Ν                 | Ν            | N              |
| j    | Т               | R                 | Т            | → R            |
| k    | Т               | Т                 | Ν            | N              |
| 1    | Т               | В                 | Т            | → R            |
| m    | В               | Ν                 | Ν            | Ν              |
| n    | В               | R                 | Т            | → R            |
| 0    | В               | Т                 | R            | ← Т            |
| р    | В               | В                 | В            | <b>←→</b> B    |

Table 2—Resolution of Link Configuration

|                    | IEEE P802.3z       |                 |
|--------------------|--------------------|-----------------|
|                    | Gigabit Task Force | Page 9 of 15    |
| rd M. Frazier, Jr. | Gigabit lask FUICE | 28-January-1997 |

# Analysis

- Cases a-f and i, k, m result in a link where Pause frames are not allowed to be sent in either direction
- Cases g, h and o result in a link where Pause frames can flow only from the partner (remote) end to the local end
- Cases j, I and n result in a link where Pause frames can flow only from the local end to the partner (remote) end
- Case p results in a link where Pause frames can flow in both directions

#### Analysis (cont)

- A device can implement a policy which restricts the configurations it will accept
- A Buffered Distributor, for instance, might always advertise "T"
  - Might transmit them, can't receive them
- Therefore, the Buffered Distributor could wind up in case i, j, k or I
  - Depending on what the link partner advertises



#### **Mismatch Handling**

- If the partner is another Buffered Distributor advertising "T":
  - The result would be case k
  - Either Buffered Distributor could reject the link, if they are not willing to accept a link without flow control
- The link is rejected by withholding C/ack transmission
  - Keep sending configuration word without the ACK bit set, thus preventing the link from coming up
- The link partner can be notified of the problem using the RF bits
  - Right now, we have two RF bits, based on Rich Taborek's presentation from Vancouver

|                        | IEEE P802.3z       |                 |
|------------------------|--------------------|-----------------|
|                        |                    |                 |
|                        |                    | Page 12 of 15   |
|                        | Gigabit Task Force |                 |
| Howard M. Frazier, Jr. |                    | 28-January-1997 |

#### **Mismatch Handling**

Current Remote Fault Encoding:

|     | e   | ,                 |
|-----|-----|-------------------|
| RF1 | RF2 | Description       |
| 0   | 0   | No error, link OK |
| 0   | 1   | Offline           |
| 1   | 0   | Link Failure      |
| 1   | 1   | Link Error        |

- Table 3—Current Encoding of RF1 and RF2
- The meaning and purpose of the "Link Error" encoding is unclear
  - We aren't going to recycle through the link configuration state machine every time there is a link error, so this encoding has no application



#### **Mismatch Handling**

- Suggest a new application for this encoding
  - Link Configuration Error
- Use this for mismatches like the case described above
- Make the following modification to the Remote Fault encoding:

| RF1 | RF2 | Description              |
|-----|-----|--------------------------|
| 0   | 0   | No error, link OK        |
| 0   | 1   | Offline                  |
| 1   | 0   | Link Failure             |
| 1   | 1   | Link Configuration Error |

- Table 4—Suggested Encoding of RF1 and RF2
- Withholding C/ack and signaling RF1,RF2 = Link Configuration Error provides a negative acknowledgement (C/nack) to the partner

|                        | IEEE P802.3z       |                 |
|------------------------|--------------------|-----------------|
|                        |                    | Page 14 of 15   |
| Howard M. Frazier, Jr. | Gigabit Task Force | 28-January-1997 |

#### Summary

- The Pause(t) and Pause(r) bit semantics are much easier to understand and interpret than Pause + ASYM\_DIR
- The Pause(t) and Pause(r) mechanism
  - Is general purpose
  - Provides a mechanism by which a device can reject an undesired link configuration, and notify the link partner
- The net effect is a much simpler scheme for negotiating flow control, including the asymmetric configurations

