Line Coding Proposal for Gigabit Copper PHY

Sreen Raghavan ComCore Semiconductor, Inc.

Outline

Introduction

- Review of existing proposals
- ComCore PHY Proposal
- Comparison of line coding methods

Introduction

Goals of copper PHY development

- I Gbit/sec data rate across a 100 meters of CAT5 4 pair wire
- Meet FCC emission requirements
- Sufficient SNR margin under worst case conditions
- Reasonable implementation complexity

Review of Existing Proposals

Baseband line coding
5-level NRZ
Passband line coding
m-QAM (CAP)

Baseband Vs. Passband

- Bandwidth efficiency for a given roll-off factor is the same for both
- Baseband method (w/o error correction coding) has higher SNR for a given emitted power beyond 30 MHz
- Baseband method suffers from baseline wander, and passband method does not

Comparison of Baseband Vs. Passband

Item	5-NRZ,	25-QAM,
Relative SNR	+1.7 dB	0dB
Baseline wander	Yes	No
ADCSpeed	250 Mrz	250 Mrz
(optimal)		
ADCSpeed	125 Mrz	250Mrz (if IF is
(sub-optimal) (1 dB SNR		performed
	penalty)	digitally)
ADCprecision	6 bits	6 bits
RXDSP	same	same
complexity		

ComCore PHY Proposal

- Shape the transmit signal by introducing "controlled ISI" at TX
- Specifically use 9-level (1+D) partial response signaling method
 - gives equivalent data throughput of 5-level NRZ by utilizing only 62.5 MHz bandwidth

1+D Partial Response Signalling

$$b_k = a_k + a_{k-1}$$

 $a_k \longrightarrow \{-2, -1, 0, 1, 2\}$ 5 level NRZ data
 $b_k \longrightarrow \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

5 level NRZ and 9 level (1+D)

5 Level NRZ

9 Level (1+D)

Why use ComCore PHY method?

Advantages

- better bandwidth utilization than 5-level NRZ (or equivalent QAM)
- 4.0 dB better SNR than NRZ for the same emitted TX power beyond 30 MHz
- "optimal" receiver using only 125 MHz ADC (since signal is strictly band-limited to 62.5 MHz)

Why use ComCore PHY method? (contd.)

- Equalization can be done using fractionally spaced equalization => equalizer performance is independent of sampling phase !
- same receiver complexity as 5-level NRZ (or, an equivalent QAM)
- Lower equalization noise enhancement at high frequencies (>30 MHz)

Comparison of 9-level (1+D) with other line codes

ltem	9-level (1+D)	5-level NRZ	25-QAM, alpha=1. 0
Relative SNR	0 dB	-4.0 dB	-5.7 dB
Baseline wander correction	Yes	Yes	No
ADC Complexi tv	6.5 bits	6 bits	6 bits
ADC Speed (optimal)	125 Mhz	250 Mhz	250 Mhz
RX DSP	1.0	1.0	1.0

Equalization of 100 meter CAT-5 response, 1+D line coding

Summary

- 9-level (1+D) partial response is an ideal line coding method for Gbit PHY
 - "optimal" receiver signal processing can be done with just 125 MHz ADC
 - 4.0 dB SNR improvement over 5-level NRZ
 - Iower equalization noise enhancement
 - receiver DSP is insensitive to sampling phase