Reaching Concensus on Fiber Specs

Paul Kolesar Lucent Technologies

for IEEE 802.3z Gigabit Ethernet May 12, 1997 Ft. Lauderdale, Florida

References for Optical Fiber

IEC 793-1, Optical Fibres, Part 1: Generic specifications - measuring methods

IEC 793-2, Optical Fibres, Part 2: Product specifications

ISO/IEC 11801, Information technology - Generic cabling for customer premises

ANSI/TIA/EIA-455A, Fiber Optic Test Procedures (FOTPs)

ANSI/TIA/EIA-526, Optical Fiber System Test Procedures (OFSTPs)

ANSI/TIA/EIA-492AAAA-A, (SP 3006-B) Draft Detail Specification for 62.5-µm core diameter/125-µm cladding diameter class la graded-index multimode optical fibers

ANSI/TIA/EIA-492BCAAA, Detail Specification for class IVa dispersion-unshifted single-mode optical fibers

ANSI/TIA/EIA-492<u>AAABxxxx</u>, (SP 3832) Draft Detail Specification for 50-µm core diameter/125-µm cladding diameter class la graded-index multimode optical fibers

ANSI/TIA/EIA-568A, Commercial building telecommunications cabling standard

Optical Fiber Reference Proposal

Table 1 -- Optical specifications for 62.5 μm fiber

Attribute	Units	802.3z Requirement	TIA	IEC	TIA	ISO/IEC
			492 <u>(SP3006-B)</u>	793-2	568A	11801
Attenuation @	dB/km	≤ 3.5/≤ 1.5	<u>≤ 2.8/≤ 0.6</u>	≤ 3.5/≤ 1.5	≤ 3.75/≤ 1.5	≤ 3.5/≤ 1.0
850 nm/1300 nm		ISO 11801 media	<u>≤ 2.8/≤ 0.7</u>	$\leq 3.2 / \leq 0.9$		
			<u>≤ 2.8/≤ 0.9</u>	$\leq 3.0/\leq 0.7$		
			<u>≤ 3.0/≤ 0.6</u>			
			<u>≤ 3.0/≤ 0.7</u>			
			<u>≤ 3.0/≤ 0.9</u>			
			<u>≤ 3.2/≤ 0.6</u>			
			<u>≤ 3.2/≤ 0.7</u>			
			\leq 3.2/ \leq 0.9			
Bandwidth	MHz∙km	≥ 160 <u>and 200</u> /≥ 500	<u>≥ 160/≥ 200</u>	≥ 160/≥ 200	≥ 160/≥ 500	≥ 200/≥ 500
@ 850 nm/1300 nm		ISO 11801 media	<u>≥ 160/≥ 400</u>	≥ 160/≥ 500		
			≥ 160/≥ 500	≥ 200/≥ 200		
			<u>≥ 160/≥ 600</u>	≥ 200/≥ 400		
			<u>≥ 200/≥ 200</u>	≥ 200/≥ 600		
			<u>≥ 200/≥ 400</u>	≥250/≥1000		
			<u>≥ 200/≥ 500</u>	≥ 300/≥ 800		
			<u>≥ 200/≥ 600</u>			
			<u>≥ 250/≥ 200</u>			
			<u>≥ 250/≥ 400</u>			
			<u>≥ 250/≥ 500</u>			
			<u>≥ 250/≥ 600</u>			
Zero-dispersion	nm	<u>13201295</u> ≤ λ₀≤1365	1320 ≤ λ₀ ≤1365 nm	N/A	N/A	N/A
wavelength		nm				

Zero-dispersion	ps/nm2•km	≤0.001(1190- λ₀) for	≤ 0.11 for	N/A	N/A	N/A
slope		$\frac{1295 \le \lambda_0 \le 1300 \text{ nm}}{1295 \le \lambda_0 \le 1300 \text{ nm}}$	$1320 \leq \lambda_0 \leq 1348 \text{ nm}$			
		≤ 0.11 for	and ≤0.001(1458-λ₀)			
		$1300 \leq \lambda_0 \leq 1348 \text{ nm}$	for			
		and ≤0.001(1458-λ₀)	$1348 \leq \lambda_0 \leq 1365 \text{ nm}$			
		for				
		$1348 \leq \lambda_0 \leq 1365 \text{ nm}$				

NOTES:

1. TIA-568A references TIA-492AAAA and includes specifications for attenuation and bandwidth

2. ISO/IEC 11801 references IEC-793-2 and includes specifications for attenuation and bandwidth

3. Canada's CSA T529-95 "Telecommunications Cabling Systems in Commercial Buildings" concurs with TIA 568-A.

4. Europe's CENELEC EN 50173 "Information Technology, Generic Cabling Systems" concurs with ISO 11801 and covers the following counties: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom.

5. Australian / New Zealand Standard AS/NZS 3080:1996 "Telecommunications Installations - Integrated Telecommunications Cabling Systems for Commercial Buildings" concurs with ISO 11801.

6. Japan's JIS X5150 cabling standard concurs with ISO 11801.

Attribute	Units	802.3z Requirement	TIA	IEC	TIA	ISO/IEC
			492 <u>(SP 3832)</u>	793-2	568A	11801
Attenuation @	dB/km	≤ 3.5/≤ 1.5	<u>≤ 2.4/≤ 0.5</u>	≤ 2.7/≤ 1.0	N/A	≤ 3.5/≤ 1.0
850 nm/1300 nm		ISO 11801 media	\leq 2.5/ \leq 0.8	\leq 2.5/ \leq 0.8		
				≤ 2.4/≤ 0.6		
Bandwidth	MHz∙km	≥ 500/≥ 500	<u>≥ 400/≥ 400</u>	≥ 200/≥ 400	N/A	≥ 200/≥ 500
@ 850 nm/1300 nm		ISO 11801 media	<u>≥ 400/≥ 600</u>	≥ 200/≥ 600		
			<u>≥ 400/≥ 800</u>	≥ 400/≥ 400		
			<u>≥ 400/≥ 1000</u>	≥ 400/≥ 600		
			≥ 500/≥ 500	≥ 400/≥ 800		
			<u>≥ 600/≥ 600</u>	≥ 400/≥ 1000		
				<u>≥ 400/≥ 1200</u>		
				≥ 400/≥ 1500		
				≥ 600/≥ 1000		
Zero-dispersion	nm	$1295 \le \lambda_0 \le 132065$	1297 ≤ λ₀ ≤1316 nm	N/A	N/A	N/A
wavelength		nm	<u>1295 ≤ λ₀ ≤1320 nm</u>			
Zero-dispersion	ps/nm2•km	≤0.001(1190-λ₀) for	\leq 0.11 for	N/A	N/A	N/A
slope		$1295 \leq \lambda_0 \leq 1300 \text{ nm}$	$1300 \leq \lambda_0 \leq 1320 \text{ nm}$			
		≤ 0.11 for	and ≤0.001(1190-λ₀)			
		$1300 \leq \lambda_0 \leq 13\underline{20}48$	for			
		nm -and	$1295 \leq \lambda_0 \leq 1300 \text{ nm}$			
		<u>≤0.001(1458-</u> λ₀) for				
		$\frac{1348 \le \lambda_0 \le 1365 \text{ nm}}{1348 \le \lambda_0 \le 1365 \text{ nm}}$				

Table 2 -- Optical specifications for 50 μm fiber

NOTES:

1. ISO/IEC 11801 references IEC-793-2 and includes specifications for attenuation and bandwidth

2. Canada's CSA T529-95 "Telecommunications Cabling Systems in Commercial Buildings" concurs with TIA 568-A.

3. Europe's CENELEC EN 50173 "Information Technology, Generic Cabling Systems" concurs with ISO 11801 and covers the following counties: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom.

<u>4. Australian / New Zealand Standard AS/NZS 3080:1996 "Telecommunications Installations - Integrated Telecommunications Cabling Systems for Commercial Buildings" concurs with ISO 11801.</u>
 <u>5. Japan's JIS X5150 cabling standard concurs with ISO 11801.</u>

Attribute	Units	802. <u>3</u> z Requirement	TIA 492	IEC 793-2	TIA 568A	ISO/IE 11801
Attenuation @ 1310 nm/1550 nm	dB/km	≤ 1.0/≤ NA <u>ISO 11801</u> <u>media</u>	≤ 0.50/≤ 0.40	≤ 0.50/≤ 0.40	≤ 0.50/≤ 0.50 <u>for OSP</u> ≤ 1.0/≤ 1.0 <u>for ISP</u>	≤ 1.0/≤ 1
Zero-dispersion wavelength	nm	N/A	$1300 \leq \lambda_0 \leq 1324 \text{ nm}$	$1300 \le \lambda_0 \le 132\underline{42}$ nm per 1995 amndmnt.1	$\frac{NA}{\underline{1300 \leq \lambda_0 \leq }}$ $\underline{1324}$	NA
Zero-dispersion slope	ps/nm2•km	N/A	≤ 0.093	≤ 0.09 <u>3</u> 5 per 1995 amndmnt.1	NA ≤ 0.093	NA
Cut-off Wavelength	<u>nm</u>	<u>N/A</u>	?	NA	<u>≤ 1270</u>	<u>≤ 128(</u>
Mode Field Diameter	<u>mm</u>	<u>N/A</u>	?	<u>9 - 10 +/- 10%</u>	<u>8.7 - 10 +/-</u> <u>0.5</u>	<u>N/A</u>
Dispersion	ps/nm	18	N/A	N/A	N/A	N/A

Table 3 -- Optical specifications for single-mode fiber

NOTES:

1. TIA-568A reference TIA-492<u>BAACAA and includes specifications for attenuation, zero dispersion wavelength, dispersion slope, mode field diameter, and cut off wavelength.</u>

21. ISO/IEC 11801 reference IEC-793-2 and includes specifications for attenuation and cut-off wavelength

3. Canada's CSA T529-95 "Telecommunications Cabling Systems in Commercial Buildings" concurs with TIA 568-A.

4. Europe's CENELEC EN 50173 "Information Technology, Generic Cabling Systems" concurs with ISO 11801 and covers the following counties: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom.

5. Australian / New Zealand Standard AS/NZS 3080:1996 "Telecommunications Installations - Integrated Telecommunications Cabling Systems for Commercial Buildings" concurs with ISO 11801.

6. Japan's JIS X5150 cabling standard concurs with ISO 11801.

Optical Fiber Reference Proposal

Table 4 -- Other applications specifying 62.5 μ m fiber

Attribut	e	Units	802. <u>3</u> z Requirement	10BASE-F	FDDI	Fibre Channel	
Attenuation 850 nm/130	-	dB/km	≤ 3.5/≤ 1.5	\leq 3.75/ \leq N/A	N/A	N/A	
Bandwid @ 850 nm/13		MHz∙km	≥ 160 <u>and 200</u> /≥ 500	≥ 160/≥N/A	≥ N/A/≥ 500	≥ 160/≥ 500	≥ 1€
Zero-disper waveleng		nm	<u>1320</u> 1295 ≤ λ₀ ≤1365 nm	$1320 \leq \lambda_0 \leq \!\! 1365 \text{ nm}$	$1295 \leq \lambda_0 \leq \!\! 1365 \text{ nm}$	N/A	
Zero-dispe slope		ps/nm2•km		$ \leq 0.11 \text{ for} \\ 1320 \leq \lambda_0 \leq 1348 \text{ nm} \\ \text{and} \leq 0.001(1458 \cdot \lambda_0) \\ \text{for} \\ 1348 \leq \lambda_0 \leq 1365 \text{ nm} $	$ \begin{array}{l} \leq \! 0.001(1190\text{-}\lambda_0) \text{ for} \\ 1295 \leq \lambda_0 \leq 1300 \text{ nm} \\ \leq 0.11 \text{ for} \\ 1300 \leq \lambda_0 \leq 1348 \text{ nm} \\ \text{and} \leq \! 0.001(1458\text{-}\lambda_0) \\ \text{ for} \end{array} $	N/A	
			$1348 \leq \lambda_0 \leq 1365 \text{ nm}$		$1348 \leq \lambda_0 \leq 1365 \text{ nm}$		

NOTES:

1. FDDI and Fibre Channel reference TIA-492AAAA and include specifications for bandwidth

2. ATM reference both TIA-492AAAA and IEC-793-2 and includes specifications for bandwidth

3. 100BASE-FX uses the multimode FDDI PMD (ISO 9314-3:1990) and references ISO 11801 compliant cabling

4. 100VG-AnyLAN requires 62.5 micron cabling meeting ISO 11801 and supports both long and short wavelength PMDs.

Attribute	Units	802. <u>3</u> z Requirement	10BASE-F	FDDI	Fibre Channel	АТМ
Attenuation @ 850 nm/1300 nm	dB/km	≤ 3.5/≤ 1.5	N/A	N/A	N/A	N/A
Bandwidth @ 850 nm/1300 nm	MHz∙km	≥ 500/≥ 500	N/A	N/A	≥ 500/≥ 500	≥ <u>160</u> - <u>500</u> /≥ 500
Zero-dispersion wavelength	nm	$1295 \le \lambda_0 \le 132065$ nm	N/A	N/A	N/A	N/A
Zero-dispersion slope	ps/nm2∙km		N/A	N/A	N/A	N/A

Table 5 -- Other applications specifying 50 μm fiber

NOTES:

1. ATM reference IEC-793-2 and includes specifications for bandwidth <u>2. 100BASE-FX uses the multimode FDDI PMD (ISO 9314-3:1990) and references ISO 11801 cabling.</u>

3. 100VG-AnyLAN does not specify 50 micron

Attribute	Units	802. <u>3</u> z Requirement	10BASE-F	FDDI	Fibre Channel	АТМ
Attenuation @ 1310 nm/1550 nm	dB/km	≤ 1.0/≤ NA	N/A	≤ 0.50/≤ 0.50	<u>N/A</u> <u>≤ 0.50/≤ 0.40</u>	<u>N/A</u> <u>≤ 0.50/≤ 0.</u> 4
Zero-dispersion wavelength	nm	N/A	N/A	1300 ≤ λ₀ ≤1322 nm	<u>N/A</u> 1300 ≤ λ₀-≤1324 nm	<u>N/A</u> 1300 ≤ λ₀ ≤132
Zero-dispersion slope	ps/nm2•km	N/A	N/A	≤ 0.095	<u>N/A</u> ≤ 0.093	<u>N/A</u> <u>≤ 0.093</u>
Cut-off Wavelength	<u>nm</u>	<u>N/A</u>	N/A	<u>≤ 1270</u>	<u>N/A</u>	<u>N/A</u>
Mode Field Diameter	<u>mm</u>	<u>N/A</u>	<u>N/A</u>	<u>8.7 - 10 +/-</u> <u>0.5</u>	<u>N/A</u>	<u>N/A</u>
Dispersion	ps/nm	18	N/A	N/A	bit rate dependent N/A	N/A

Table 6 -- Other applications specifying single-mode fiber

NOTES:

1. FDDI and Fibre Channel reference TIA-492BCAAA. FDDI defaults to TIA-492BAAA in the event of differences between them.

21. ATM references both TIA-492CAAA and IEC-793-2

<u>3. 100BASE-FX does not specify SMF.</u>
<u>4. 100VG-AnyLAN does not specify SMF.</u>

Description	<u>Unit</u>	<u>50 μm</u>	MMF	<u>62.5 μm MMF¹</u>			
		<u>@ 850 nm</u>	<u>@ 1300 nm</u>	<u>@ 850 nm</u>	<u>@ 850 nm</u>	<u>@ 1300 nm</u>	<u>@ 1300</u>
Operating Range	<u>m</u>	<u>2 to 518</u>	<u>2 to 575</u>	<u>2 to 250</u>	<u>2 to 300</u>	<u>2 to 635</u>	<u>2 to 30</u>
Attenuation, max.	<u>dB/km</u>	<u>3.5</u>	<u>1.5</u>	<u>3.5</u>	<u>3.5</u>	<u>1.5</u>	<u>1.0</u>
<u>Modal Bandwidth, min.</u>	<u>MHz∙km</u>	<u>500</u>	<u>500</u>	<u>160</u>	<u>200</u>	<u>500</u>	<u>N/A</u>
<u>Zero Dispersion</u> <u>Wavelength (</u> λ ₀) Range	<u>nm</u>	<u>1295 ≤</u> λ	<u>₀ ≤ 1320</u>		<u>1300 ≤</u> ≤132		
Dispersion Slope, max.	<u>ps/km∙nm²</u>		$\begin{array}{c c} \underline{0 \le \lambda_0 \le 1320 \text{ nm},} \\ \underline{(1190 - \lambda_0) \text{ for}} \\ \underline{0 \le 1300 \text{ nm}} \end{array} \xrightarrow{\leq 0.11 \text{ for } 1320 \le \lambda_0 \le 1348 \text{ nm},} \\ \underline{1348 \le \lambda_0 \le 1365 \text{ nm}} \end{array}$				<u>≤ 0.093</u> <u>1300 ≤</u> ≤1324
Dispersion, max.	<u>ps/nm,</u> <u>RMS</u>	<u>N</u>	<u>/A</u>	<u>N/A</u>			<u>18</u>
<u>Connector Return Loss,</u> <u>nin.</u>	<u>dB</u>	2	<u>20</u>		<u>20</u>		
<u>ink Attenuation, max.</u> @ max. operating <u>listance</u>	<u>dB</u>	<u>T.B.D.</u>	<u>T.B.D.</u>	<u>T.B.D.</u>	<u>T.B.D.</u>	<u>T.B.D.</u>	<u>T.B.I</u>
_ink Penalties, max.	<u>dB</u>	<u>T.B.D.</u>	T.B.D.	<u>T.B.D.</u>	<u>T.B.D.</u>	T.B.D.	<u>T.B.</u> [

Table 7 -- Current (May 12, 1997) IEEE 802.3z Fiber Specs

¹ Two specifications for 850-nm operation are provided to support the two bandwidth grades of 62.5 mm MMF commonly used today.

Short History of 62.5 micron Specs.

- 1. 200/500 MHz-km spec in ISO 11801
 - taken from center cells of single-window IEC 793-2 specs
- 2. 160/500 MHz-km previously established
 - by 10BASE-F/FDDI respectively and adopted by TIA 568A
- 3. Lucent commented several times on ISO 11801 drafts
 - to harmonized with 160/500 MHz-km specs
 - had no effect
- 4. Lucent modified products to support ISO 11801
- 5. 20 countries now specify 200/500 MHz-km within their cabling standards
 - EN 50173 (17 European counties)
 - AS/NZS 3080 (Australia and New Zealand)
 - JIS X5150 (Japan)

Rationale for 200 MHz-km 62.5 micron

- 1. 802.3z objective to support media from ISO 11801
- 2. 200 MHz-km @ 850 nm specified by ISO 11801
- 3. IEC 793-2 and TIA 492 have cells that extend beyond 200 MHz-km @ 850 nm
 - indicates broad industry support
- 4. Lucent is responding to market demands and needs
- 5. Others are also free to do so
- 6. Dual 160 and 200 MHz-km specification is not exclusionary

Potential 50 micron Issues (that Lucent does not intend to raise for the sake of expediting the standard)

- 1. Fewer suppliers of 50 than 62.5 micron
- 2. No 500/500 MHz-km cell in IEC 793-2, TIA 568-A, or ISO 11801
- 3. 1.5 dB/km @ 1300 nm does not meet ISO 11801 spec of 1.0 dB/km
- 4. 500 + 50 = 550 meters: Only LWL on 50 micron satisfies
 - 50 micron provides no benefit beyond 62.5 coverage of the 550 m objective
 - therefore eliminate 50 micron for simplification

Lucent Willing to Compromise

- 1. Include 50 micron in 802.3z
 - even though Lucent has no 50 micron product at this time
- 2. Accept 500 MHz-km @ 850 nm spec for 50 micron
 - even though it is far in excess of 200 MHz-km spec in ISO 11801
- 3. Accept 1.5 dB/km @ 1300 nm for both 62.5 and 50 micron
 - even though Lucent sells only the 1.0 dB/km grade
 - because it does not jeopardize reaching 550 meter objective
- 4. Accept separating the chromatic dispersion specs for 50 and 62.5 micron
 - even though the separation only benefits 50 micron
- 5. Accept chromatic dispersion specified by equation rather than template to save space
 - even though the template is much easier to comprehend
- 6. Include specs for 160 MHz-km @ 850 nm fiber performance along with 200 MHz-km
 - even though Lucent sells only the 200 MHz-km grade