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Abstract

   In this report, the performance of 4LZS with run substitution used in conjunction
with scrambling is evaluated. Run length statistics corresponding to random bit
streams are calculated for two run substitution schemes.

I. Introduction

   Scrambling is used to spread the spectrum of transmitted data so as to reduce EMC
problems associated with broadband data transmission over unshielded media.
Quasi-periodic patterns in the source data stream can introduce emission spikes. By
randomizing these patterns through scrambling, the emission spectrum is
smoothed out. Scrambling can also improve data transmission characteristics by
reducing jitter and inter-symbol interference. Runs (sequences of unchanging bits)
are also broken up by scrambling, resulting in a more reliable stream for clock
recovery. Scrambling is also used to provide some measure of link security.

   In order for the receiver to descramble the received data, it must be synchronized
with respect to the transmitter's scrambling sequence. Accordingly, scrambling
schemes can be classified by the method of synchronization. There are three
categories: frame synchronous, self-synchronous and distributed sample scrambling.
In frame synchronous scrambling, the scrambler is initialized at the start of frame
transmission. The descrambler at the receiving end is likewise initialized at the
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same reference point. Frame synchronous scrambling is susceptible to malicious
"killer packet" attacks, wherein packets  are constructed in such a way as to produce
a constant output stream after scrambling, thus causing the receiver to (eventually)
lose symbol-level sync.

   With self-synchronous scrambling, the scrambling pattern is generated from the
transmitted bit stream itself. As its name implies, the received bit stream
automatically acquires (descrambling) synchronization when the number of bits
received equals the memory interval of the scrambling scheme. Self-synchronous
scrambling can be used to foil killer packet attacks, but error multiplication is
introduced, whereby even a single bit error in the received scrambled bit stream can
result in multiple bit errors at the descrambler's output. This problem can arise
because the value of any given scrambled bit is dependent upon the values of other
bits in the transmitted stream.

   Distributed sample scrambling can be viewed as a variation of frame synchronous
scrambling, where the scrambler can operate continuously without being
reinitialized at the start of each frame. Samples of the scrambling bits are sent to the
receiver for synchronization. If the samples match corresponding descrambling bits,
the receiver assumes synchronization has been attained and leaves its descrambler's
state unchanged. If the samples do not match on the other hand, then a correction
algorithm is applied to the descrambler's state to (eventually) bring it into sync with
the received scrambled stream. While frame synchronous scrambling is sufficient
for randomizing long frames (e.g., SONET/SDH, Ethernet), distributed sample
scrambling produces better scrambling characteristics for short frames (e.g., ATM
cells). Self-synchronous scrambling is suitable for short and long frames, but at the
expense of error multiplication. Distributed sample scrambling is not susceptible to
error multiplication (in the scrambled stream) but is sensitive to errors in the
transmitted samples. The need to send samples may also result in bandwidth
expansion, although it can be avoided depending on the application at hand.

II. Examples of Scrambling

   Frame synchronous scrambling is specified for 100Base-Tx Ethernet in the ANSI
X3.263-1995 TP-PMD standard [1]. The generating polynomial is given by 1 + x9 + x11.
As shown in Fig. 1, an 11-stage linear feedback shift register (LFSR) is used to
generate the cipher stream, whose output is XOR'ed onto the transmit data stream.
The TP-PMD scrambler has a period of 2047 bits (i.e., indicating an efficient design,
in which all possible states of the 11-bit register are visited, except of course for the
all zeroes pattern, which produces an all-zero sequence). The scrambler's register is
initialized to 00...001 at the start of frame transmission. Frame synchronous
scrambling is also used for scrambling SONET frames. The generating polynomial is
1 + x6 + x7 , and has a period of 127. The scrambler is initialized to 1111111 at the most
significant bit of the byte following the STS-1 number N C1 byte. The scrambler's
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output is tapped from the x7  position and added modulo 2 onto this bit and all
subsequent bits throughout the complete STS-N frame [2].

   Distributed sample scrambling is specified for the cell-based PHY layer in ATM [3].
The generating polynomial is 1 + x28 + x31. The entire cell is scrambled except for the
HEC field. In order to recalculate the HEC CRC for the first 32 (scrambled) bits in the
header, the same HEC CRC is calculated on the 32 scrambler bits coincident with the
first 32 header bits. This CRC is then added modulo-2 to the original HEC CRC. Two
samples from the scrambling sequence are added (modulo 2) to the seventh and
eighth bits of the HEC byte. Consequently, only the last six HEC bits can be used for
cell delineation, since the modified bits cannot be used for error control until the
descrambler is synchronized.

   For SDH-framed ATM on the other hand, a self-synchronous scrambler with
generating polynomial 1 + x43 is recommended [3, 4]. Only the payload area of the
ATM cells are scrambled to avoid error multiplication in the cell header (the
headers are sent  unscrambled; (de)scrambling operations are suspended and the
(de)scrambler states are preserved during these 5-byte intervals).  Note that if a bit
error occurs in the scrambled transmission stream, then another bit error will be
introduced 43 bit times later when a (hitherto correct) bit is XOR'ed with the output
of the scrambler (propagating the original errored bit). The ATM cells are mapped
onto the payload area of a SONET/SDH frame, which itself is (frame-synchronous)
scrambled.
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Fig. 1. Block diagram of TP-PMD scrambler.

III. Run Substitution and Run Lengths.

   Since 2 bits are encoded into 1 4LZS symbol, there are four possible repeating
patterns, taken two bits at a time, that will generate constant symbol runs, as shown
in Table 1. Two run substitution schemes are considered in this report. In the first
scheme, hereafter referred to as slotted run substitution, substitutions can occur only
at fixed periodic boundaries that delineate slots of length equal to the run
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substitution threshold. In this scheme, only runs which completely fill a slot are
substituted. Hence, substitution codes are inserted at well-defined boundaries, which
can increase robustness against channel errors. In the second scheme, substitutions
are made whenever the run threshold is reached, regardless of slot alignment. This
scheme, referred to as unslotted run substitution, bounds the run length more
tightly than the slotted scheme but may be less robust since the substitutions can
occur at arbitrary positions. Examples for these two schemes are depicted in Fig. 2.

Table 1. Constant run patterns with 4LZS coding.
Bit Stream Quat Stream
101010...... +3 +3 +3 ......
111111...... +1 +1 +1 ......
010101...... -1 -1 -1 ......
000000 ...... 0 0 0 ......

K

tim
runs

substitution (slotted)

substitution (unslotted)

Fig. 2. Run Substitution Sample Paths.

   For a given run threshold of K  quats, the maximum run lengths after substitution
for unslotted and slotted substitution are K − 1 and 2K − 2  quats respectively.
Assuming the worst case, as with killer packet attacks for example, the received
symbol stream will appear as a maximum length run alternating with a substitution
code. The substitution scheme and the value of K  must be chosen such that clock
recovery is not compromised. Maximum run lengths for different values of K  are
given in Table 2.
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Table 2. Maximum run lengths for different values of K.

K Maximum Run Length (Quats)
Slotted Unslotted

4 6 3
8 14 7
16 30 15
24 46 23
32 62 31

   Excluding killer packet attacks, the scrambled data stream will appear to be random
if either the scrambler or the unscrambled data pattern is random. A well-designed
scrambler should produce, for all practical purposes, a random bit stream. Likewise,
the fields of Ethernet frames are generally random. The principal benefit then from
scrambling comes from randomizing repeated patterns, such as the preamble, carrier
extension and idle sequences. In the absence of killer packet attacks, it ought to
suffice to study only the case where the scrambled stream is random. Table 3 shows
the run length distribution without substitution. While a "run" usually means a
constant symbol stream, the runs "seen" for clock recovery purposes may differ
however, depending on implementation. A simplified edge detection circuit may
only be detecting transitions between pairs of levels (e.g., (+3,-3) and (+1,-1)) for
example. Accordingly, two sets of probabilities are shown. The probabilities for
p = 0.25  correspond to constant symbol runs (applicable to clock recovery circuits
that detect all transitions), while those for p = 0.5  correspond to runs consisting of
any one of two symbol pairs. It can be seen that in either case, long runs are
extremely improbable. For the case where substitution is used to bound run lengths,
the corresponding distributions have also been evaluated to completely characterize
the resulting truncated runs.  Distributions for K = 8  are given in Tables 4 and 5 for
slotted and unslotted substitution respectively. The numerical values were obtained
from theoretical results derived in Appendix A. For the sake of brevity, only a
partial listing of the probability distributions are shown, and corresponding results
for other values of K have been omitted.

Table 3. Run length distribution without substitution.
Run Length Probability

p = 0.25 p = 0.5
1 0.75 0.5
2 0.1875 0.25
4 0.01172 0.0625
8 4.578e-5 0.00391
16 6.985e-10 1.526e-5
32 1.626e-19 2.33e-10
64 8.816e-39 5.42e-20
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Table 4. Run length distribution for slotted substitution, K=8.
Run Length Probability

p = 0.25 p = 0.5
1 0.75 0.5
2 0.188 0.25
4 0.0117 0.0626
8 4.01× 10−5 0.00342
10 1.79 × 10−6 0.000609
14 1.4 × 10−9 7.61e-6

Table 5. Run length distribution for unslotted substitution, K=8.
Run Length Probability

p = 0.25 p = 0.5
1 0.75 0.502
2 0.1875 0.251
4 0.01172 0.06275
7 1.831× 10−4 0.0311

   It can be seen in Table 3 that the number of long runs (e.g., 32, or 64 quats) becomes
statistically a very small fraction of the total number of runs. The corresponding
proportion of time occupied by long runs is very small. As an example, it can be
shown that the proportion of time occupied by runs longer than 64 quats for p = 0.25

is 1.44 × 10−37 , or roughly 1 run longer than 64 quats in 4.4 × 1020  years. SONET
requires that clock recovery be possible for runs of up to 72 bits. PMC-Sierra's chips
are typically capable of maintaining sync for runs of even up to 80 bits (line symbols)
long. It is clear that in general, if killer packets are excluded, a good scrambler alone
(without run substitution) should be sufficient to ensure reliable clock recovery.

IV. Recommendations for PMC's Gigabit Ethernet UTP-5 PHY Proposal.

   Frame synchronous cipher stream scrambling is recommended to avoid error
multiplication inherent with self-synchronous scrambling, and possible bandwidth
expansion as well as additional implementation complexity resulting from
distributed sample scrambling. The killer packet problem is addressed by a
substitution scheme in which constant runs are replaced by uniquely identifiable
patterns to restore the requisite transition density required for clock recovery [5].
Since constant runs also occur, however improbable (as analyzed below) in
completely random, scrambled data, the substitution code is also of incidental utility
to guarantee transition density, a characteristic of 8B10B-coded data transmission.

    In some applications, error multiplication may not be a major issue, as a packet
with one error is no better off than a packet with multiple errors. In the case of IEEE
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802.3 however, there is a strong requirement that any combination of up to 3 bit
errors in an Ethernet frame must be detectable. The possible existence of subsequent
bit errors arising from any of up to 3 originating errors makes it difficult to prove
that the error detection requirement can be satisfied, if at all. The error detection
properties of the CRC-32 code used in the FCS would have to be characterized
thoroughly and compared with patterns containing more than 3 bit errors.
Moreover, the existence of even one undetectable pattern arising from error
multiplication from 3 or fewer bit errors might well be enough to render the
scrambling scheme unacceptable in an 802.3 standard. It is reasonable to conjecture
that consideration of error multiplication precluded self-synchronous scrambling
from the ANSI TP-PMD spec.

   It may very well suffice to simply adopt the scrambler specified in ANSI TP-PMD.
The frequency spectrum of the bit stream produced by this LFSR does appear to
correspond to that of a random data stream [6]. In the PMC scheme, the scrambler is
initialized at certain reference points marked by special unscrambled symbol
patterns embedded in the transmitted data stream (e.g., start of packet, link
unavailable indication and link configuration). The scrambled bits pass through a
run detector and a substitution encoder. The run detector can be implemented by a
bit serial FIFO with a digital comparator to detect bit patterns that will generate runs.
The run detector's decisions feed into the substitution encoder, which either passes
the quat stream from the FIFO or generates a run substitution code. At the receiver,
the received symbols are buffered and decoded. Control codes are extracted and runs
corresponding to substitution codes are replaced. The descrambler uses the same
LFSR as used by the scrambler. It is initialized with the same seed at the same
initialization points for scrambling, as determined by control codes extracted from
the received symbol stream. A block diagram is shown in Fig. 3. Note that  delays
equal to the run substitution threshold are incurred at both the transmitter and the
receiver. While a simpler implementation is possible with an edge detection circuit
that only detects transitions between pairs of levels, the required number of
substitution codes may increase enormously. This is because the number of distinct
symbol sequences increases exponentially with run length, as shown below in Table
6. Consequently, the number of substitution codes required can be prohibitively
large even for short runs. For this reason, an edge detection that can detect
transitions between any symbol level is strongly recommended.

Table 6. Number of distinct symbol sequences for runs consisting of symbol pairs.

Run Length Number of
Distinct Runs

4 32
8 512
16 131072
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Fig. 3. Block diagram of scrambler and substitution functions.

V. Concluding Remarks

   In summary, scrambling is recommended for EMC reasons. Frame synchronous
cipher-stream scrambling is recommended over self-synchronous scrambling for
robustness against error multiplication. Compared to distributed sample scrambling,
frame synchronous scrambling avoids bandwidth expansion and sample error
sensitivity issues. Moreover, distributed sample scrambling does not confer any
significantly improved scrambling characteristic for the relatively long frame
lengths encountered in Ethernet. Run substitution is proposed to remove sync loss
susceptibility of frame-synchronous scrambling to killer packet attacks, and of
scrambling in general to random occurrences of long constant runs. Detection of
transitions between any of the four levels (+1, +3, -1, -3) is strongly recommended
and may well be required in order to control the number (and possibly the
complexity as well) of substitution codes. It is difficult to discuss how much more
robust unslotted substitution is to slotted substitution without further details on the
substitution codes as well as the channel model. The difference in robustness is
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expected to be marginal. At any rate, slotted substitution with K = 8  appears to be a
reasonable choice. The TP-PMD scrambler has a period of approximately 1000 quats.
With a line rate of 250 MBd, this translates to a frequency of approximately 250 kHz,
yielding spectral contributions that are expected to be far below the range for radiated
emissions. No particular problems are foreseen at this point for conducted
emissions either. While the TP-PMD scrambling scheme appears to be acceptable,
other LFSR configurations may be suitable as well. For example, the generator
polynomial for the distributed sample scrambler used for the ATM cell-based PHY
( 1 + x28 + x31) might also be considered for frame synchronous scrambling.
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Appendix A. Run Length Analysis for Random Data Streams.

   An unchanging sequence of symbols is generated when bit patterns repeat, taken
two at a time. All the possible patterns are shown in Table 1. Let p  denote the
probability that the next two-bit sequence exactly matches the preceding two-bit
sequence. Let q = 1 − p denote the complementary probability. Since 1's and 0's occur
with equal probability, p = 1 4. In the quasi-binary case (considering only transitions
between pairs of levels, e.g., (+3,-3) and (+1,-1)), p = 1 2.
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A.1. Run Length Distribution Without Substitution.

   The behavior of the runs with time can be modeled by a Markov chain, from
which the probability distribution for the run length can be obtained from the
stationary distribution of the Markov chain. As depicted in Fig. A.1, the system is
initially in state 1. Each time the current symbol is repeated (with probability p), the
system moves to state 2, 3, 4, ... and so forth. If a different symbol occurs (with
probability q), the system returns back to state 1 (thus ending a given run). The
stationary probabilities can be obtained as follows. Let πi  denote the probability that
the system is in state i,   i = 1,2,K Using flow balance on nodes,

  

pπ1 = (p + q)π2 = π2

pπ2 = π3 = p2π1

M

pπi−1 = πi = pi−1π1

(A.1)

Since πii=1
∞∑ = 1,   π1(1 + p + p2+L) = π1 1 − p( ) = 1. So π1 = q , from which all the other

probabilities can be computed.

   The proportion of time, F, occupied by runs longer than K symbols is given by

F =
iπi

i=K +1

∞
∑

iπi
i=1

∞
∑

= K + 1( )pKq + pK +1

(A.2)

after substituting in (A.1) and simplifying.
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1 2 i i+1
p p p p p

q
q

q

q

q

Figure A.1. Markov chain for run lengths without substitution.

A.2. Run Length Distribution with Unslotted Substitution.

   With unslotted substitution, any run K symbols long is substituted with a pattern
of equal length. The runs "seen" on the transmitted data will therefore consist of
unsubstituted runs (shorter than K-1 symbols), and substitution codes replacing
runs K symbols long. The choice of the substitution codes can therefore affect the
resulting runs in the (substituted) data stream to some extent. To avoid
complications arising from  dependencies on the substitution code and for the sake
of clarity, a run preceding a substitution is considered to be terminated (ended) at the
symbol immediately preceding the substitution codeword. Runs containing the
substitution code are not considered. The impact of this approximation is not
serious, as the worst-case runs can be easily bounded,  by adding in the length of the
substitution code for example.

   A Markov chain similar to that used for the case without substitution can be used
as follows. The run lengths (with the definition above in mind) are mapped onto
states in the Markov chain. As shown in Fig. A.2, transitions occur from state i to
i+1 with probability p, and from any state j to 1 with probability q, except for state K,
wherein a run of length K occurs and is substituted. State K transitions to state 1
with probability 1. Using the flow balance equations,

  πi = pi−1π1,i = 2,K, K . (A.3)

Since πii=1
K∑ = 1,

π1 = 1 − p

1 − pK . (A.4)
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p p p p

q q

q

1
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Fig. A.2. Markov chain for run lengths with unslotted substitution.

A.3. Run Length Distribution with Slotted Substitution.

   The analysis here is somewhat more complicated because substitution at slotted
intervals introduces memory in the system. The maximum run length (before
substitution is triggered) will depend on where the run starts relative to the slot
boundary. A K-state Markov chain can be constructed to model starting points of the
runs. The run length distribution can then be obtained by conditioning on the
distribution of the starting points.

   In general, the ( K × K ) state transition matrix takes the following form:

  

P =

0 q pq p2q L pK −3q pK −2

pK −2q pK −1q q + pKq pq L pK −4q pK −3q + pK +1

M O M

pq p2q p3q p4q L pK −1q q + pK

q pq p2q p3q L pK −2q pK −1





















. (A.5)

To see how this matrix is constructed, consider the first row. This corresponds to the
first position in the slot. With probability q, the run (of length 1) is ended, and the
next starting point is at position 2. With probability pq, a symbol is repeated,
followed by a different symbol (ending a 2-symbol run), and the next starting point is
at position 3. When K-2 repeats occur (with probability pK −2), the run will be
terminated if the next symbol is either different or repeated (because a substitution is
inserted to replace the K symbols). Examples for K=3 and K=4 are given by
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P =
0 q p

pq p2q q + p3

q pq p2















(A.6)

and

P =

0 q pq p2

p2q p3q q + p4q pq + p5

pq p2q p3q q + p4

q pq p2q p3



















(A.7)

respectively.

   In general, the stationary distribution is obtained by solving the system of linear
equations given by

  
Pji

j=1

K

∑ π j = πi ,i = 1,K, K, (A.8)

subject to
πii=1

K∑ = 1. (A.9)

With this particular problem, a simple solution by direct application of flow balance
either on nodes or on arcs did not appear to be possible. By solving for K = 3 and
K = 4 however, a pattern emerged, indicating that   π1 = π2 =L= πK −1 = γ , for some
constant γ  that changed with K. By conjecturing that this was true, the value of γ
was obtained as follows. Applying (A.9),

(K − 1)γ + πK = 1. (A.10)

Let Si ≡ Pjij=1
K −1∑ . From (A.8), we have

SKγ + PKKπK = πK . (A.11)

By combining (A.10) and (A.11), and solving for γ  by eliminating πK , we obtain

γ = 1 − PKK

SK + K − 1( )(1 − PKK )
. (A.12)

πK  can then be obtained from (A.10). The conjecture was tested and found to be true
at least for the numerical results in this report.
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   Let L and I denote the run length and starting point respectively. The run length
distribution can be computed by conditioning on the πi 's as follows,

Pr(L = x) = Pr L = x I = i( )
i=1

K

∑ πi , (A.13)

where

  

Pr(L = x| I = i) =
px−1q, x = 1,K,2K − i, x ≠ k − i + 1,i = 2,K, K

px−1q + p2K −i , x = K − i + 1,i = 2,K, K

px−1q, x = 1,K, K.









(A.14)


