Impact of Packet Bursting on GMII and PCS

Howard M. Frazier, Jr. Sun Microsystems Computer Company Internet and Networking Products Group 11-November-1996

	IEEE P802.3z Gigabit Task Force	Page 1 of 8
Howard M. Frazier, Jr.	Bigabil Task Force	11-November-1996

Goals for Packet Bursting

- Use existing PCS code space
- Maintain existing PCS code rules
- Maintain PCS error robustness
- Use existing GMII signal set
- Maintain existing GMII signalling rules
- Maintain compatibility with GMII based repeater

(in short, don't break anything)

	IFFF P802 37	
		Page 2 of 8
Howard M. Frazier, Jr.	Gigabit Task Force	11-November-1996

GMII and PCS signalling proposal

- GMII rules:
 - Packets are transmitted and received during a burst using the same signal behavior as described in Bob Grow's presentation
 - While bursting, the Carrier Extend encoding is applied to the GMII during the Inter-Frame Spacing (IFS) interval
 - The TX_EN and RX_DV signals are used to delimit packets
- PCS rules:
 - The PCS initiates packets with the "S" code, and terminates packets with the currently defined combinations of "T" and "R" codes
 - The PCS maps the Carrier Extend encoding into the "R" code
 - The CRS signal is asserted throughout the burst

(so far, so good)

	IEEE P802.3z Gigabit Task Force	
		Page 3 of 8
Howard M. Frazier, Jr.		11-November-1996

TX_CLK_		
TX_EN		/
TXD<7:0>	<u>Χ Χ ΄΄ ϲ</u> κς΄΄ Χεχχτχεχηχ	DXEXXXTXEXNXDXPXRXEXAXMXBXLXEX X
TX_ER		
CRS		
COL		
10bit TX	X d X d X d X d X d X t X r X r X r X r X r X	RXRXRXRXRXRXSXDXDXDXDXDXDXDXDX

	IEEE P802.3z Gigabit Task Force	Page 4 of 8
Howard M. Frazier, Jr.		11-November-1996

	IFFF P802 37	
		Page 5 of 8
Howard M. Frazier, Jr.	Gigabit Task Force	11-November-1996

Error Robustness

- But wait! What about Error Robustness?
- /S/ (K27.7) and /R/ (K23.7) differ by only two bits!

A two bit error could result in the concatenation of two packets, and all kinds of horrible things could happen, right? Wrong.

If an /R/ in the middle of the inter-frame interval gets turned into an /S/ the next /R/ will violate the "normal packet termination" rule

Because it is not paired with a /T/

If the /R/ which immediately precedes an /S/ gets turned into an /S/ then the preamble could grow by one byte

No impact on error robustness, but we could have PCS indicate an error if we want, based on detecting /S/S/

If an /S/ turns into an /R/ then the next symbol will be "Dx.y" (preamble) which should result in an error indication to the MAC

RX_DV=1 and RX_ER=1

	Cigobit Took Force	Page 6 of 8
Howard M. Frazier, Jr.	Gigabit Task Force	11-November-1996

Impact on Reconciliation Sublayer

- In baseline Carrier Extension, the PLS_DATA_VALID.indicate primitive must be derived from:
 - RX_DV # RX_ER & (RXD<7:0>==Carrier Extend)
- With Packet Bursting, the PLS_DATA_VALID.indicate primitive must be derived from:
 - RX_DV & !(!RX_DV_[t-1] & RX_ER_[t-1]) # RX_ER & (RXD<7:0>==Carrier Extend)

You don't have to implement the Reconciliation Sublayer Your implementation just has to behave like you did

Implies a shortened IFS at the receiver

Clever implementations can get the full IFS back, if they need it

Summary

- No new codes in the PCS
- Consistent with existing PCS code rules
- No harm to PCS error robustness
- No additions to GMII signal set
- Consistent with existing GMII signalling rules
- Since signalling behavior is symmetric, this proposal is compatible with a GMII based repeater

(See, I told you I wouldn't break anything)

