
IEEE
CSMA/CD Std P802.3z/Dzero

sections
4.2.7.1 Common Constants and Types

The following declarations of constants and types are used by the frame transmission and reception
of each CSMA/CD sublayer:

const
addressSize = ... ; {48 bits in compliance with 3.2.3}
lengthOrTypeSize = 16; {in bits}
clientDataSize = ...; {MAC client Data, see 4.2.2.2a)3)}
padSize = ...; {in bits, = max (0, minFrameSizex addressSize

+ lengthSize + clientDataSize + crcSize))}.
dataSize = ...; {= clientDataSize + padSize}
crcSize = 32; {32 bit CRC = 4 octets}
frameSize = ...; {= 2x addressSize + lengthOrTypeSize + dataSize + crcSize,

see 4.2.2.2a)}
minFrameSize = ... ; {in bits, implementation-dependent, see 4.4}
maxFrameSize = ... ; {in octets, implementation-dependent, see 4.4}
extendSize = ...; {in bits, implementation-dependent, see 4.4}
extensionBit = ...; {a new type of non-data bit}
minTypeValue = 1536; {minimum value of the Length/Type field for Type interpretation}
maxValidFrame = maxFrameSizex addressSize + lengthOrTypeSize + crcSize) / 8;

{in octets, the maximum length of the MAC client data field. This constant
is defined for editorial convenience, as a function of other constants}

slotTime = ... ; {unit of time for collision handling, implementation-dependent, see 4.4}
preambleSize = ... ; {in bits, physical-medium-dependent}
sfdSize = 8; {8 bit start frame delimiter}
headerSize = ...; {sum of preambleSize and sfdSize}

type
Bit = 0..1;
AddressValue =array [1..addressSize]of Bit;
LengthOrTypeValue =array [1..lengthOrTypeSize]of Bit;
DataValue =array [1..dataSize]of Bit;
CRCValue =array [1..crcSize]of Bit;
PreambleValue =array [1..preambleSize]of Bit;
SfdValue =array [1..sfdSize]of Bit;
ViewPoint = (fields, bits); {Two ways to view the contents of a frame}
HeaderViewPoint = (headerFields, headerBits);
Frame =record {Format of Media Access frame}

case view: ViewPointof
fields: (

destinationField: AddressValue;
sourceField: AddressValue;
lengthOrTypeField: LengthOrTypeValue;
dataField: DataValue;
fcsField: CRCValue);

bits: (contents:array [1..frameSize]of Bit)
end; {Frame}

Header =record {Format of preamble and start frame delimiter}
case headerView : HeaderViewPointof

headerFields : (
preamble : PreambleValue;
sfd : SfdValue);

headerBits : (
headerContents :array [1..headerSize]of Bit)
1

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

/3

ing

s

end; {defines header for MAC frame}

4.2.7.2 Transmit state variables

The following items are specific to frame transmission. (See also 4.4.)

const
interFrameSpacing = ... ; {minimum time between frames}
interFrameSpacingPart1 = ... ; {duration of first portion of interFrametiming. In range 0 up to 2

interFrameSpacing}
interFrameSpacingPart2 = ... ; {duration of remainder of interFrame. Equal to interFrameSpac

attemptLimit = ... ; {Max number of times to attempt transmission}
backOffLimit = ... ; {Limit on number of times to back off }
BurstLength= ... ; {In Burst Mode, channel holding time limit}
jamSize = ... ; {in bits: the value depends upon medium and collision

detect implementation}

var
outgoingFrame: Frame; {The frame to be transmitted}
outgoingHeader: Header;
currentTransmitBit, lastTransmitBit: 1..frameSize;
{Positions of current and last outgoing bits in outgoingFrame}
lastHeaderBit: 1..headerSize;
extension: 0..extendSize; {length of extension}
deferring: Boolean; {Implies any pending transmission must wait for

the medium to clear}
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
attempts: 0..attemptLimit; {Number of transmission attempts on

outgoingFrame}
newCollision: Boolean; {Indicates that a collision has occurred but has

not yet been jammed}
transmitSucceeding: Boolean; {Running indicator of whether

transmission is succeeding}
halfDuplex: Boolean; {Indicates the desired mode. halfDuplex is a static variable; its value doe

not change between invocations of the Initialize procedure}
BurstMode: Boolean: {Enables the transmission of multiple packets in a single carrier event}
MyBurst : Boolean; {In BurstMode, the given station has acquired the medium

and the burst timer MAC has not yet expired}
BurstStart : Boolean {In BurstMode, indicates that the first packet transmission is in progress}

4.2.7.3 Receive state variables

The following items are specific to frame reception. (See also 4.4.)

var
incomingFrame: Frame; {The frame being received}
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}
receiving: Boolean; {Indicates that a frame reception is in progress}
excessBits: 0..7; {Count of excess trailing bits beyond octet boundary}
receiveSucceeding: Boolean; {Running indicator of whether reception is succeeding}
validLength: Boolean; {Indicator of whether received frame has a length error}
exceedsMaxLength: Boolean; {Indicator of whether received frame has a length
2

IEEE
CSMA/CD Std P802.3z/Dzero

cesses
global
le, and

nd

 initial-
longer than the maximum permitted length}
extendCount: 0..extendSize; {count of the extension bits at end of frame}
newBurst: Boolean; {In BurstMode, indicates whether this is the first frame of a burst}
FrameOver : Boolean; (In BurstMode, indicates the end of a frame within a burst}

4.2.7.4 Summary of interlayer interfaces

a) The interface to the LLC sublayer, defined in 4.3.2, is summarized below:

type
à TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError);

{Result of TransmitFrame operation}
à ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong,

frameCheckError, lengthError, alignmentError);
{Result of ReceiveFrame operation}

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue): TransmitStatus; {Transmits one frame}

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue): ReceiveStatus; {Receives one frame}

b) The interface to the Physical Layer, defined in 4.3.3, is summarized in the following:
var

receiveDataValid: Boolean; {Indicates incoming bits}
carrierSense: Boolean; {In half-duplex mode, indicates that transmissions should defer}
transmitting: Boolean; {Indicates outgoing bits}
wasTransmitting: Boolean; {Indicates transmission in progress or just completed}
collisionDetect: Boolean; {Indicates medium contention}

procedure TransmitBit (bitParam: Bit); {Transmits one bit}
function ReceiveBit: Bit; {Receives one bit}
procedure Wait (bitTimes: integer); {Waits for indicated number of bit-times}

4.2.7.5 State variable initialization

The procedure Initialize must be run when the MAC sublayer begins operation, before any of the pro
begin execution. Initialize sets certain crucial shared state variables to their initial values. (All other
variables are appropriately reinitialized before each use.) Initialize then waits for the medium to be id
starts operation of the various processes.

NOTE: If in half-duplex operation the Initialize procedure waits for the medium to become idle, and
then immediately starts the other processes, the Deference process will be unaware of the activity a
hence will not generate the required interFrame gap. Thus there is a risk that the first frame transmis-
sion will violate the interFrame spacing requirement unless the Initialize procedure waits for a defer-
ence interval during startup.

If Layer Management is implemented, the Initialize procedure shall only be called as the result of the
izeMAC action (5.2.2.2.1).
3

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

e im-

ruct the
turned
procedure Initialize;
begin

frameWaiting := false;
deferring := false;
newCollision := false;
transmitting := false; {In interface to Physical Layer; see below}
receiving := false;
if BurstMode then
begin

MyBurst := false;
newBurst := true

end;
while carrierSensedo nothing;
{Start execution of all processes; see NOTE above.}

end; {Initialize}

4.2.8 Frame transmission

The algorithms in this subclause define MAC sublayer frame transmission. The function TransmitFram
plements the frame transmission operation provided to the MAC client:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue): TransmitStatus;

procedure TransmitDataEncap; ... {nested procedure; see body below}
begin

if transmitEnabledthen
begin

TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
elseTransmitFrame := transmitDisabled

end; {TransmitFrame}

If transmission is enabled, TransmitFrame calls the internal procedure TransmitDataEncap to const
frame. Next, TransmitLinkMgmt is called to perform the actual transmission. The TransmitStatus re
indicates the success or failure of the transmission attempt.

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence field:

procedure TransmitDataEncap;
begin

with outgoingFramedo
begin {assemble frame}

view := fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField: = lengthOrTypeParam;
dataField := ComputePad (dataParam);
fcsField := CRC32(outgoingFrame);
view := bits

end {assemble frame}
4

IEEE
CSMA/CD Std P802.3z/Dzero

 frame

}

raffic.
sched-

 mode.
with outgoingHeaderdo
begin

headerView: = headerFields;
preamble: = ...; {* ô1010...10,õ LSB to MSB*}
sfd: = ...; {* ô10101011,õ LSB to MSB*}
headerView: = headerBits

end
end; {TransmitDataEncap}

ComputePad appends an array of arbitrary bits to the LLCdataField to pad the frame to the minimum
size.

function ComputePad(
var dataParam:DataValue) :DataValue;

begin
ComputePad: = {Append an array of size padSize of arbitrary bits to the MAC client dataField

end;{ComputePadParam}

TransmitLinkMgmt attempts to transmit the frame. In half-duplex mode, it first defers to any passing t
In half-duplex mode, if a collision occurs, transmission is terminated properly and retransmission is
uled following a suitable backoff interval:

function TransmitLinkMgmt: TransmitStatus;
begin

attempts := 0; transmitSucceeding := false;
lateCollisionCount := 0;
deferred := false; {initialize}
excessDefer := false;
if BurstMode then {Check to see if BurstTimer has expired}

MyBurst := MyBurst andBurstTimer(BurstLength);
frameWaiting := MyBurst {since BurstMode implies halfDuplex}

end;
while (attempts<attemptLimit)and (not transmitSucceeding)do
begin {loop}

{If MyBurst is set, then go straight to transmission without checking deference. Otherwise . . .}
if not (BurstMode and MyBurst) then
begin

if attempts>0then BackOff;
if halfDuplexthenframeWaiting := true;

while deferringdo {defer to passing frame, if any*}
à if halfDuplexthendeferred := true; {or do nothing, without Layer Management}

if BurstMode then {this will be the first frame in a burst}
begin

StartBurstTimer;
MyBurst := true;
BurstStart := true

end{Burst Mode starting a Burst}
end; {not both BurstMode and MyBurst}
lateCollisionError := false;
if halfDuplexthenframeWaiting := false;

*. The Deference process ensures that the variable deferring is not true for passing traffic in full-duplex
5

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

rocess

atch-
StartTransmit;
if halfDuplexthen
begin

while transmittingdo WatchForCollision;{cancels MyBurst in a collision}
if lateCollisionErrorthen

lateCollisionCount := lateCollisionCount + 1;
attempts := attempts + 1;

end{half-duplex mode}
else {full-duplex mode}

while transmittingdonothing
end; {loop}
if transmitSucceedingthen
begin

TransmitLinkMgmt := transmitOK;
if BurstMode then
begin

BurstStart := false; {Canõt be the first packet anymore}
MyBurst := BurstTimer(BurstLength) {Check to see if Burst has expired}

end
end
else TransmitLinkMgmt := excessiveCollisionError;
LayerMgmtTransmitCounters;

{update transmit and transmit error counters in 5.2.4.2}
end;{TransmitLinkMgmt}

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter p
that bit transmission should begin:

procedure StartTransmit;
begin

currentTransmitBit := 1;
lastTransmitBit := frameSize;
transmitSucceeding := true;
transmitting := true;
lastHeaderBit: = headerSize

end; {StartTransmit}

In half-duplex mode, TransmitLinkMgmt monitors the medium for contention by repeatedly calling W
ForCollision, once frame transmission has been initiated:

procedure WatchForCollision;
begin

if transmitSucceedingand collisionDetectthen
begin

if currentTransmitBit > (minFrameSize - headerSize+ extendSize)then
lateCollisionError := true;

newCollision := true;
transmitSucceeding := false;
if BurstMode then
begin

MyBurst := false;
if not BurstStart then

lateCollisionError := true {Every collision is late, unless it hits the first packet in a
burst}
6

IEEE
CSMA/CD Std P802.3z/Dzero

e Bit-
ollision
i-
a prop-
.2.2). An

ttempt

d mul-

le defer-
end
end

end; {WatchForCollision}

WatchForCollision, upon detecting a collision, updates newCollision to ensure proper jamming by th
Transmitter process. The current transmit bit number is checked to see if this is a late collision. If the c
occurs later than a collision window ofslotTime bits 512 bit times into the packet, it is considered as ev
dence of a late collision. The point at which the collision is received is determined by the network medi
agation time and the delay time through a station and, as such, is implementation-dependent (see 4.1
implementation may optionally elect to end retransmission attempts after a late collision is detected.

After transmission of the jam has been completed, if TransmitLinkMgmt determines that another a
should be made, BackOff is called to schedule the next attempt to retransmit the frame.

function Random (low, high: integer): integer;
begin

Random := ...{uniformly distributed random integer r such that low
end; {Random}

BackOff performs the truncated binary exponential backoff computation and then waits for the selecte
tiple of the slot time.

procedure BackOff;
begin

if attempts = 1then maxBackOff := 2
else if attempts
then maxBackOff := maxBackOffx 2;
Wait(slotTimex Random(0, maxBackOff))

end; {BackOff}

procedure StartBurstTimer;
begin

{reset an independent realtime timer and start it timing}
end; {StartBurstTimer}

function BurstTimer (
begin

{return the value true if the specified number of microseconds have not elapsed since
the most recent invocation of StartBurstTimer, otherwise return the value false}

end; {BurstTimer}

The Deference process runs asynchronously to continuously compute the proper value for the variab
ring. Note that, in the case of half-duplex burst mode, deferring remains true across the entire burst.

process Deference;
begin

if halfDuplexthen cycle{half-duplex loop}
while not carrierSensedo nothing; {watch for carrier to appear}
deferring := true; {delay start of new transmissions}
wasTransmitting:=transmitting;
while carrierSense or transmittingdo

wasTransmitting: = wasTransmitting or transmitting;
7

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

al Lay-
if wasTransmittingthen
begin

StartRealTimeDelay; {time out first part interframe gap}
while RealTimeDelay(interFrameSpacingPart1)do nothing

end
else

begin
StartRealTimeDelay;
repeat
while carrierSensedo StartRealTimeDelay
until not RealTimeDelay(interFrameSpacingPart1)

end;
StartRealTimeDelay; {time out second part interframe gap}
while RealTimeDelay(interFrameSpacingPart2)do nothing;
deferring: = false; {allow new transmissions to proceed}
while frameWaitingdo nothing {allow waiting transmission if any}

end {half-duplex loop}
else cycle{full-duplex loop}

while nottransmittingdonothing; {wait for the start of a transmission}
deferring := true; {inhibit future transmissions}
while transmittingdonothing; {wait for the end of the current transmission}
StartRealTimeDelay; {time out an interframe gap}
whileRealTimeDelay(interFrameSpacing)donothing;
deferring := false {donõt inhibit transmission}

end{full-duplex loop}
end; {Deference}

procedure StartRealTimeDelay
begin

{reset the realtime timer and start it timing}
end; {StartRealTimeDelay}

function RealTimeDelay (
begin

{return the value true if the specified number of microseconds have
not elapsed since the most recent invocation of StartRealTimeDelay,
otherwise return the value false}

end; {RealTimeDelay}

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the Physic
erõs TransmitBit operation:

process BitTransmitter;
begin

cycle {outer loop}
if transmitting then
begin {inner loop}

if halfDuplex then extension := 0;
PhysicalSignalEncap; {Send preamble and start of frame delimiter}
while transmittingdo
begin

if halfDuplex and (currentTransmitBit > lastTransmitBit) then
begin

transmitBit(extensionBit);
8

IEEE
CSMA/CD Std P802.3z/Dzero

te the
t is as-
rame up
extension := extension + 1
end
else

TransmitBit(outgoingFrame[currentTransmitBit]);
{send next bit to Physical Layer}

if newCollisionthen StartJamelse NextBit
end;

end; {inner loop}
else{not transmitting}

if BurstMode and MyBurst then
begin
 InterFrameSignalEncap; {continue extended carrier across a standard

 interframe spacing}
MyBurst := MyBurst and frameWaiting {End the burst unless another

frame is available}
end

end; {outer loop}
end; {BitTransmitter}

procedure PhysicalSignalEncap;
begin

while currentTransmitBit
begin

TransmitBit(outgoingHeader[currentTransmitBit]);
{transmit header one bit at a time}

currentTransmitBit := currentTransmitBit + 1
end;
if newCollisionthen StartJamelse
currentTransmitBit := 1

end; {PhysicalSignalEncap}

procedureInterFrameSignalEncap;
begin

{transmit 96 bits of ExtensionBit}
end;

procedure NextBit;
begin

currentTransmitBit := currentTransmitBit+1;
transmitting := (currentTransmitBit
if halfDuplex and not(BurstMode andnot BurstStart) then {carrier extension may be required}

 transmitting := transmitting or (currentTransmitBit <= (minFrameSize + extendSize))
end; {NextBit}

procedure StartJam;
begin

currentTransmitBit := 1;
lastTransmitBit := jamSize;
newCollision := false

end; {StartJam}

BitTransmitter, upon detecting a new collision, immediately enforces it by calling StartJam to initia
transmission of the jam. The jam should contain a sufficient number of bits of arbitrary data so that i
sured that both communicating stations detect the collision. (StartJam uses the first set of bits of the f
9

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

nternal
dicates

nsmission
to jamSize, merely to simplify this program).

4.2.9 Frame Reception

The algorithms in this subclause define CSMA/CD Media Access sublayer frame reception.

The procedure ReceiveFrame implements the frame reception operation provided to the MAC client:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue): ReceiveStatus;

function ReceiveDataDecap: ReceiveStatus; ... {nested function; see body below}
begin

if receiveEnabledthen
repeat

ReceiveLinkMgmt;
ReceiveFrame := ReceiveDataDecap;

until receiveSucceeding
else

ReceiveFrame := receiveDisabled
end; {ReceiveFrame}

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the i
procedure ReceiveDataDecap to return the frameõs fields to the MAC client if the frameõs address in
that it should do so. The returned ReceiveStatus indicates the presence or absence of detected tra
errors in the frame.

function ReceiveDataDecap: ReceiveStatus;
à var status : ReceiveStatus; {holds receive status information}

begin
à with incomingFramedo
à begin
à view := fields;

receiveSucceeding := RecognizeAddress (incomingFrame, destinationField);
receiveSucceeding := LayerMgmtRecognizeAddress (destinationField);

à if receiveSucceedingthen
begin {disassemble frame}

destinationParam := destinationField;
sourceParam := sourceField;
lengthOrTypeParam: = lengthOrTypeField;
dataParam := RemovePad (lengthOrTypeField, dataField);
exceedsMaxLength := ...; {check to determine if receive frame size exceeds the

maximum permitted frame size (maxFrameSize)}
if exceedsMaxLengththen status := frameTooLong
else
if fcsField = CRC32 (incomingFrame)then
begin

à if validLengththen ReceiveDataDecap: = receiveOK
à else status: = lengthError

end
else
begin
10

IEEE
CSMA/CD Std P802.3z/Dzero

t, if pos-
 field
ction is

 if

 colli-
à if excessBits = 0then ReceiveDataDecap := frameCheckError
à else status := alignmentError

end;
LayerMgmtReceiveCounters(status);

{update receive and receive error counters in 5.2.4.3}
view: = bits

end {disassemble frame}
à end; {with incomingFrame}
à ReceiveDataDecap := status

end; {ReceiveDataDecap}

function RecognizeAddress (address: AddressValue): Boolean;
begin

RecognizeAddress := ... {Returns true for the set of physical, broadcast,
and multicast-group addresses corresponding
to this station}

end;{RecognizeAddress}

The function RemovePad strips any padding that was generated to meet the minFrameSize constrain
sible. Length checking is provided for Length interpretations of the Length/Type field. For Length/Type
values in the range between maxValidFrame and minTypeValue, the behavior of the RemovePad fun
unspecified.

function RemovePad(
var lengthOrTypeParam:LengthOrTypeValue
var dataParam:DataValue):DataValue;

begin
if lengthOrTypeParamthen
begin

validLength:= true; {Donõt perform length checking for Type field interpretations}
RemovePad := dataParam

end
else
begin

if lengthOrTypeParamthen
begin

validLength := {For length interpretations of the Length/Type field, check to determine
value represented by Length/Type field matches the received
clientDataSize};

if validLengththen
RemovePad:={truncate the dataParam (when present) to value

represented by lengthOrTypeParam (in octets)
and return the result}

else
RemovePad:=dataParam

end
end

end; {RemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments from
sions by comparing them to the minimum valid frame size:

procedure ReceiveLinkMgmt;
begin

repeat
11

IEEE
Std P802.3z/Dzero SUPPLEMENT TO 802.3:

 by the
receiveSucceeding := true;
StartReceive;
while receivingdo nothing; {wait for frame to finish arriving}
excessBits := frameSizemod 8;
frameSize := frameSize
receiveSucceeding :=receiveSucceedingand (frameSize >= minFrameSize)

{reject collision fragments}
until receiveSucceeding

end; {ReceiveLinkMgmt}

procedure StartReceive;
begin

currentReceiveBit := 1;
receiving := true

end; {StartReceive}

The BitReceiver process runs asynchronously, receiving bits from the medium at the rate determined
Physical Layerõs ReceiveBit operation,partitioning them into frames, and optionally receiving them:

processBitReceiver;
var b : Bit;

begin
cycle{outer loop}

if receiveEnabledthen
begin{receive next frame from physical medium}

currentReceiveBit := 1; {moved here from StartReceive}
extendCount := 0;
FrameOver := false;
PhysicalSignalDecap; {Skip idle and strip off preamble and sfd}
while receiveDataValidand notFrameOver do
{inner loop to receive the rest of an incoming frame}
begin

b := ReceiveBit; {next bit from physical medium}
if b = extensionBitthen

if newBurst then {first frame may have needed carrier extension}
if (currentReceiveBit + extendCount) > (minFrameSize + extendSize)then
begin {extension is finished}

newBurst := false;
FrameOver := true

end
else{extension is not finished}

extendCount := extendCount + 1
else {remaining frames do not use carrier extension, this is interframe spacing}

FrameOver := true
else {next bit is not an extensionBit}
begin

if receiving then {append bit to frame}
incomingFrame[currentReceiveBit] := b;

newBurst := newBurstand
(currentReceiveBit + extendCount) < (minFrameSize + extendSize);

currentReceiveBit := currentReceiveBit + 1
end{not an extensionBit}

end; {inner loop}
receiving := false;
12

IEEE
CSMA/CD Std P802.3z/Dzero
frameSize := currentReceiveBit
receiveSucceeding := not newBurst

end {enabled}
end{outer loop}

end; {BitReceiver}

procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected,
discard bits and return.In BurstMode, set newBurst := true when ReceiveDataValid
is false, and treat an extensionBit like an idle if newBurst is false}

end; {PhysicalSignalDecap}
13

