# Asymmetric Flow Control (AFC) and Gigabit Ethernet

Bill Bunch

National Semiconductor Corp.

Phone: (408)721-7274 Email: Bill.Bunch@nsc.com

# **Adding Asymmetric Ability**

- 802.3x defines extensions to Clause 28 that allows configuration of PAUSE function
- The single bit definition only supports symmetric PAUSE ability
  - PAUSE=1means "I can transmit & receive PAUSE frames
  - PAUSE=0 means "Not only can't I transmit PAUSE frames, but I won't understand them"
  - Turn on PAUSE functionality only if PAUSE=1 on both ends
- Asymmetric PAUSE requires an additional bit
- Solution: Add ASM\_DIR bit
  - PAUSE=0, ASM\_DIR=1 -> Advertises transmitter but no receiver
  - PAUSE=1, ASM\_DIR=1 -> Advertises receiver but no transmitter

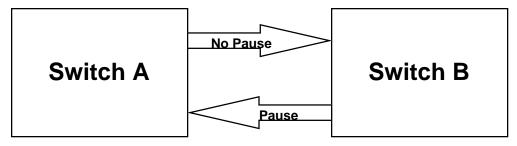
# **Resolution & Compatibility**

- Resolution is identical to 802.3x except:
  - Asymmetric cases (#4 & #9)
  - No Receiver case (part of #2)
- In Cases 4 & 9 both devices are aware of new asymmetric flow control

|         | Local Device |                   | Link Partner |            |
|---------|--------------|-------------------|--------------|------------|
|         | PAUSE        | ASM_DIR           | PAUSE        | ASM_DIR    |
| Case #1 | 0            | 0                 | Don't Care   | Don't Care |
|         | _            |                   | ,            | _          |
|         | -            | •                 | •            |            |
| Case #2 | 0            | 1                 | 0            | Don't Care |
|         | -            | $\longrightarrow$ |              | -          |
|         | , i          | <b>'</b>          |              | •          |
| Case #3 | 0            | 1                 | 1            | 0          |
|         | _            |                   | •            | _          |
|         | ļ            | •                 | •            |            |
| Case #4 | 0            | 1                 | 1            | 1          |
|         |              |                   |              | <u> </u>   |
|         |              |                   |              | _          |
| Case #5 | 1            | 0                 | 0            | Don't Care |
|         | _            |                   | •            | _          |
|         | •            |                   | `            |            |

|          | Local Device |        | Link Partner |              |
|----------|--------------|--------|--------------|--------------|
|          | PAUSE        | ASM_DR | PAUSE        | ASM_DIR      |
| Case #6  | 1            | 0      | 1            | 0            |
|          | _            |        |              |              |
| Case #7  | 1            | 0      | 1            | 1            |
|          | •            |        |              | <b>†</b>     |
| Case #8  | 1            | 1      | 0            | 0            |
|          | •            | ,      | •            | <del>-</del> |
| Case #9  | 1            | 1      | 0            | 1            |
|          | ļ            |        |              |              |
| Case #10 | 1            | 1      | 1            | Don't Care   |
|          | <b>+</b>     |        |              | 1            |

# **AFC to End Stations**


#### Stop traffic at its source

- Eliminates potential for network congestion (a good thing)
- Flow Control below the application causes potential for congestion within the end station
  - Generally more buffers inherent in End Stations
  - Switches will not need to replicate these buffers
- Abuse of upstream PAUSE will lead to network congestion
- AFC allows enforcement that End Stations not apply backpressure to the network

# End Station No Pause Switch

# **AFC Between Switches**

- Effects are dependent on traffic flows and topology
- 1Asymmetry causes a burden on switch design
  - Switch B "saves" the cost of a PAUSE receiver
  - Switch A can be shut down by Switch B
    - Congestion in Switch A more likely
    - Switch A designer must account for additional probability of congestion
- Asymmetry causes a burden on the user
  - Requires awareness of individual switch resource limitations
  - Cannot assume a given toplogy will work
  - Too many options
  - At least one of the switches must support PAUSE



# AFC and "Gigabuffer"

- Gigabuffer performs much like a traditional repeater
  - Both cause congestion in switches below them in the network hierarchy
- Requires the attached device to implement the PAUSE receiver
  - Otherwise, it cannot function correctly
  - Implies that all switches must implement PAUSE receiver or not be compatible with Gigabuffer
- Who saves?
  - "No receiver" benefactors are switch ports dedicated to end station connections and Gigabuffer Repeaters
  - Switches must implement PAUSE receiver to allow Gigabuffer interoperation
  - Switch to Switch AFC will cause more user pain than switch savings

# **The Bottom Line**

### Gigabuffer Repeaters require AFC to function

- Cannot act on PAUSE receive (without stopping the network)
- Requires switches to implement PAUSE receiver

#### Switch to Switch links

- AFC is bad for the (I)user and switch designer
- Symmetric Flow Control puts design burden on all switches equally

#### AFC from switch to end stations

- Denies end stations the ability to apply backpressure
- Reduces probability of network congestion
- This is really a means to enforce a PAUSE transmit policy
- Cost savings not present if all switch ports are designed to connect to either an end station or switch port

# Recommendations

- If Gigabuffer Repeaters are to be supported, then PAUSE receive needs to be mandated for all uplink switch ports
- Allow switch ports connected to end stations to ignore and discard PAUSE frames
  - Through ASM\_DIR bit and special defaults for end stations and switch ports, or
  - Through policy definitions (may need a "standard" distinction between end station and switch port)
- Disallow asymmetric Flow Control on switch to switch links
- Require PAUSE receiver in Gigabit end stations???
  - We have the opportunity to reduce optionality and provide services that can be relied on