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Methodology

Goals: 1) Prove Long wavelength laser & MMF
form a robust Gb/s Ethernet link

2) Theoretically investigate specification issues
by
Worst case experimental testing:
e 50MMF
e Worst case lasers ~ 0.7 nm rms spectral width

e Many laser-MMF launch methods
e TIA FO 6.5 Draft Procedure

Simulation:
e MSL penalties & confirmation of experimental results
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Modal Noise BER Power
Penalty Measurement Setup
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e Three 1 dB Points of MSL

or

e Computer controlled

e Single 3 dB lumped axial offset loss

H&Q HEWLETT

PACKARD



BER

1E-6
1E-7
1E-8
1E-9
1E-10

1E-11

Results: Measured modal noise
penalties, 1300nm, 50MMF

Typical modal noise

e Near worst case lasers

power penalty curves

~ 0.7 nm RMS spectral width

e Three points of MSL (1 dB each)

OFL - axial and longitudinal offset

27

-26.5 -26 -25.5 -25

Received Power (dBm)

connectors

- 1st MSL point 12 m from laser launch

Laser Launch

Penalties @ 10”-10 BER

minimum average maximum
OFL 0.4 dB 0.5dB 0.6 dB
Connected Directly | 0.2 dB 0.15dB 0.25 dB

to Transceiver
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Results:

Measured modal noise penalties,
1300nm, 50MMF, 3 dB lumped MSL

Example modal noise
power penalty curve

e Near worst case lasers

1E-7

~ 0.7 nm RMS spectral width

1E-8

e Single 3 dB point of MSL

1E-9 -

- axial offset connector
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Received Power (dBm)

- 12 m from laser launch

Laser Launch

Penalties @ 10”-10 BER
minimum average maximum

Connected Directly
to Transceiver

HEWLETT
PACKARD

A

0.4 dB 0.8 dB 1.2 dB




Results: Measured modal noise
penalties, 1300nm, 50MMF
versus launch category

Launch Modal Noise

Category Penalty
. (dB) Three points of MSL (1 dB each)

(overfilled) 0.42 . o

- axial and longitudinal offset connectors
2 0.37
3 0.37 - 12 m from laser launch
4 0.2
5 0.15
(very underfilled)
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Category 1
Overfilled

O

Category 4
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Category 2

Category 5
Very Underfilled

Pictures of the Categories of
launch*

Category 3

1300nm
50MMF

*The categories of launch
are defined by EIA/TIA
OFSTP-14A



Penalty, (dB)

Theory: Modal Noise Penalty,
OFL, 1300nm, 50MMF

Calculated assuming:

e three 1dB points of MSL
separated by 4m, 1st
point located 12m from

laser
¢ 0.65nm mode spacing
e Theoretical MSL Penalty

versus k and RMS
spectral width

o 02 04 06 08 1
e 10"-12 BER

mode partition factor, (k)
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Theory: Modal Noise Penalty, OFL,
1300nm, 50MMF

5 Calculated assuming:
a4 e three 1dB points of MSL
3 separated by 4m,

S, located to maximise the
S penalty

@ |

22 e 0.65nm mode spacing

&

1o e Theoretical MSL Penalty

versus k and RMS

, , | , | , | , spectral width
0 0.2 0.4 0.6 0.8 1
mode partition factor (k)

e 10M-12 BER
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Mode Coupling Theory Of Modal
Noise

Modal noise penalty measurements indicate :

e Smallest penalties with direct launch from
laser transceivers (SW or LW)

e Smaller loss at MSL connectors than OFL measurement
would imply

e OFL not achieved with laser transceivers
- especially true for 62MMF
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Mode Coupling Theory Of Modal
Noise

e Modes of infinite square-law medium approximate
modes of near parabolic MMF

e Let [C] be mode coupling matrix of the connector
joining two fibers

e Then the transmission matrix [F] for the joint is defined by:
[F1=[clic] '

e Elements of [F] can be used to calculate coupling and modal
noise characteristics of the fiber joint
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Mode Coupling Theory Of Modal
Noise: Coherent Source

Average power coupling: Standard deviation of n:
=5 E W o) = [ZZWW (F

Vv not x
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Low frequency SNR:
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Mode Coupling Theory Of Modal Noise:
Coherent Source, Coupling Loss

Actual Loss Vetaus OFL Loss
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Underfilled fibers
exhibit less loss
at connectors

14



Mode Coupling Theory Of Modal
Noise: Coherent Source,
dc-SNR, single connector

de-alR versus coupling loss (Axal)

150 T I

OFL Cormector loss (dB)
= Uniform Mode Fower Distthution
" Gpeckle Theory Uniform Mode Power Distrbution
% Steady State Mode Power Distribution
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de- SHE: (dE)

de-aHE versus Connector Loss (Axal)
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= BMD: 2 lowest mode groups

= EMD: 3 lowest mode groups
— Utaform Mode Distribution
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Mode Coupling Theory Of Modal
Noise: Coherent Source, dc-SNR

We have used Mode Coupling Theory to show:
e For single OFL connector loss up to ~ 2 dB:

- RML has higher dc-SNR compared to Uniform Mode Power
distribution (OFL)

- RML has smaller BER penalty compared to OFL
e For larger (> 2 dB) OFL connector loss at a single point:

-  RML dc-SNR less than OFL dc-SNR

- RML has larger BER penalty compared to OFL
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Conclusions

Long wavelength lasers & MMF form robust Gb/s Ethernet links
e Transceivers can be qualified with Modal Noise Test Procedure
e 62MMF: Theoretical worst case modal noise power penalty < 1 dB

e 50MMF: Theoretical worst case modal noise power penalty < 2 dB
- penalty may be reduced by increasing laser spectral width
- HP allocates 1.5 dB penalty for modal noise

e Experimental penalties less than predicted by worst case speckle theory

e Mode coupling theory: proved RML dramatically reduces modal noise penalties
for single points of MSL < 2 dB
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Long wavelength Laser MMF Links: 50MMF results
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