

Review of Hewlett-Packard Proposal: Long Wavelength Laser-Based Fiber Optic Links.

IEEE 802 Plenary Meeting Vancouver, BC November 11-15, 1996

David Cunningham, M. Nowell and Del Hanson*

Hewlett-Packard Laboratories
Filton Road
Stoke Gifford
Bristol BS12 6QZ

Phone: +44 117 9228749

Z

e-mail: dgc@hplb.hpl.hp.com

* Del Hanson, Hewlett-Packard, Optical Communications Division

PACKARD

Outline

- Need for 62 MMF support in building backbone, 550m links
- HP July Proposal: 62 MMF and 1300nm lasers
- Modal noise allocations
- Technical foundations and status of 50MMF and 1300nm lasers
- Longer MMF links with Restricted Mode Launch (RMI)?
- Conclusions

ISO 11801 Cable Model

Summary Fibre Cable Data

- ISO 11801 cable model and link lengths
- 90 m, Horizontal (+ 10 m for patchcords)
- 500 m, Building Backbone (+ 50 m for patchcords)
- 1.5 km, Campus Backbone (+ 50 m for patchcords)
- 62.5 MMF dominant in building backbone
- Small population of SMF links
- 300 m, extended horizontal (home run) links important for future installations

ISO/IEC 11801 Cable transmission pertormance parameters

1100 MBaud.km	500 MHz.km	1 dB/km	1.3 um
370 MBaud.km	200 MHz.km	3.5 dB/km	0.85 um
Expected Baud Rate Length Product	Minimum modal Bandwidth	Maximum Attenuation	Wavelength

1.25 GBaud, 550m links easily achieved

Based on OFL modal bandwidth link lengths up to approximately 850 m supported

Standards With MSL Allocations (62MMF and 50MMF)

- ATM Forum: 622 MBaud
- short wavelength lasers, maximum penalty = 1 dB @ 10^-10 BER
- Fibre Channel: 1062 MBaud
- short wavelength lasers, maximum penalty = 1 dB @ 10^-12 BER
- Serial HIPPI: 1200 Mbaud
- maximum penalty = 1 dB @ 10^-12 BER short and long wavelength lasers,

loss when lasers are used Effect of launch condition on

Connector attenuation is a strong function of the laser launch condition when lasers are used

connector for different launch conditions Comparison of attenuation of misaligned

MSL Definition Development: Connector Loss Versus Loss Experienced by Laser

During ATM Forum/MNTMG debates it was agreed:

- Most laser transceivers under fill fiber
- OFL connector loss usually greater than loss experienced by laser
- Cabling standards define connector loss
- MSL defined by worst case connector loss
- MSL must be DISTRIBUTED

ISO/IEC 11801-based worst case MSL model

- Worst case connector loss (0.75 dB) and splice loss (0.3 dB) lumped together:
- $MSL ext{ of } A = 1.05 ext{ dB}$
- $MSL ext{ of } B = 1.05 ext{ dB}$
- → $MSL \ of \ C = 0.75 \ dB$
- Short patch cords produce highest level of modal noise
- MSL is <u>distributed</u> throughout the link

TIA FO 6.5 (MNTMG): Modal Noise Test Equipment

Worst case cable model agreed by simulation

- → MSL Test box
- MSL fabrication
- MSL calibration
- Measurement procedure maturing
- Measurements agreed
- Round robin testing planned

MSL Test box

(MNTMG, Modal Noise Test Methodology Group an ad hoc Industry Group [IBM, Honeywell, Hewlett-Packard, Vixel Corp.]

Number of Fiber Modes versus Wavelength

- Worst case SW and LW lasers have similar coherence
- Same number of fibre modes at : 850 nm in 50 MMF
 1300 nm in 62 MMF
- Expect similar power penalties for: Short wavelength 50 MMF Long wavelength 62 MMF

ISO/IEC 11801: Worst Case MSL Model, Power Penalties

Theoretical MSL Power Penalty versus Link Length

(10^-10 BER, k =1, worst case spectra, 5 GHz linewidth)

OFL, 1300nm, 50MMF Theory: Modal Noise Penalty,

Theoretical MSL Penalty versus k and RMS spectral width

Penalty,

Calculated assuming:

- separated by 4m, 1st three 1dB points of MSL laser point located 12m from
- 0.65nm mode spacing
- 10^12 BER

Modal Noise BER Power Penalty Measurement Setup

Single 3 dB lumped axial offset loss

9

Measured modal noise penalties: 1300nm 62MMF

Near worst case lasers:

~ 0.7nm RMS width to maximise worst case modal noise.

Measured using:

three 1 dB points of MSL separated by 4m, 1st point of MSL located 12m from laser (according to TIA FO6.5 draft standard)

Measured Modal Noise Penalties: 50MMF, 1300nm

Penalties < 1 dB for worst case HP, 1300 nm, coaxial lasers even on 50 MMF

Results: Measured modal noise penalties, 1300nm, 50MMF, 3 dB Lumped MSL

Example modal noise power penalty curve

Near worst case lasers

~ 0.7 nm RMS spectral width

Single 3 dB point of MSL

axial offset connector

- 12 m from laser launch

1.2 dB	0.8 dB	0.4 dB	Connected Directly to Transceiver
j	j	; ;	
maximum	average	minimum	
BER	ies @ 10^-10 BER	Penalties	Laser Launch

Extending 62 MMF Links using RML: Initial Results

Summary

62MMF and long wavelength lasers:

- robust specification
- 62 MMF support for majority of installed building backbone, 550 m links
- $ilde{\ \ }$ based on OFL modal bandwidth up to $ilde{\ \ }$ 850m link lengths
- allocate 1 dB modal noise penalty

50MMF and long wavelength lasers:

- convincing results
- HP allocate ~ 1.5 dB modal noise penalty
- further results to be reported by HP at this meeting

RML with lasers:

