PBB-TE Infrastructure Protection Proposed 5C IEEE 802.1 May 2009 Interim Meeting Pittsburgh, PA., USA

Bob Sultan; Ben Mack-Crane (Huawei Technologies) Vinod Kumar (Tejas Networks) Corona Wei; Irene Ao (ZTE) Steve Haddock Ken Young (Gridpoint Systems) Dave Martin (Nortel Networks) Abhay Karandikar (Indian Institute of Technology, Bombay) John Lemon (Adtran) Haim Porat (Ethos Networks)

Five Criteria

Broad Market Potential

A standards project authorized by IEEE 802 shall have a broad market potential. Specifically, it shall have the potential for:

- Broad sets of applicability.
 - The commercial provision of Traffic Engineered services is a large and growing business. This type of localized protection switching would be advantageous.
- Multiple vendors and numerous users.
 - The same large body of vendors and users having a requirement for IEEE 802.1Qay.
- Balanced costs (LAN versus attached stations).
 - This project does not materially alter the existing cost structure of bridged networks.

Compatibility

- IEEE 802 defines a family of standards. All standards shall be in conformance with the IEEE 802.1 Architecture, Management, and Interworking documents as follows: 802. Overview and Architecture, 802.1D, 802.1Q, and parts of 802.1f. If any variances in conformance emerge, they shall be thoroughly disclosed and reviewed with 802.
 - This PAR is for an amendment to 802.1Q designed to be interoperable with existing deployments and does not modify data or control frames (see scope).
- Each standard in the IEEE 802 family of standards shall include a definition of managed objects that are compatible with systems management standards.
 - Such a definition will be included.

Distinct Identity

Each IEEE 802 standard shall have a distinct identity. To achieve this, each authorized project shall be:

- Substantially different from other IEEE 802 standards.
 - This enhancement to 802.1Qay-2009 is distinct because it offers local protection switching while preserving the frame format.
- One unique solution per problem (not two solutions to a problem).
 - There are no other standard solutions to localized recovery with no increase in overhead in a Traffic Engineered bridged network.
- Easy for the document reader to select the relevant specification.
 - This project will amend the only IEEE 802 standard defining Traffic Engineered bridged networks.

Technical Feasibility

For a project to be authorized, it shall be able to show its technical feasibility. At a minimum, the proposed project shall show:

- Demonstrated system feasibility.
 - The function is similar in complexity to PBB-TE endto-end TESI protection which is currently specified by amendment 802.1Qay to 802.1Q, which has been successfully implemented.
- Proven technology, reasonable testing.
 - The function can be implemented using existing bridge behaviors. Compliance with the project can be tested using straightforward extensions of existing test tools for bridged networks.
- Confidence in reliability.
 - The reliability of the modified protocols will be not be measurably worse than that of the existing Traffic Engineered Bridged networks.

Economic Feasibility

For a project to be authorized, it shall be able to show economic feasibility (so far as can reasonably be estimated) for its intended applications. At a minimum, the proposed project shall show:

- Known cost factors, reliable data.
 - This project introduces no hardware costs beyond the minimal and well-known resources consumed by extending an existing software protocol.
- Reasonable cost for performance.
 - The cost of upgrading software and configuring a priori knowledge of the overall system topology is reasonable for the significant reduction in the time required to recover from a network failure.
- Consideration of installation costs.
 - The cost of installing enhanced software, in exchange for improved network performance, is familiar to vendors and users of bridged networks.