3 Draft

1 2

Recommended Practice for Multi-Vendor Access Point

- **Interoperability via an Inter-Access Point Protocol**
- 6 Across Distribution Systems Supporting IEEE 802.11
- 7 Operation
- 8 Sponsored by the
- 9 LAN/MAN Standards Committee
- 10 of the
- 11 IEEE Computer Society

12

- 13 Copyright © 2002 by the Institute of Electrical and Electronics Engineers, Inc.
- 14 345 East 47th Street
- 15 New York, NY 10017, USA
- 16 All rights reserved.

17 This is an unapproved draft of a proposed IEEE Recommended Practice, subject to change. Permission is hereby

granted for IEEE Standards Committee participants to reproduce this document for purposes of IEEE standardization

19 activities. If this document is to be submitted to ISO or IEC, notification shall be given to the IEEE Copyright

20 Administrator. Permission is also granted for member bodies and technical committees of ISO and IEC to reproduce

this document for purposes of developing a national position. Other entities seeking permission to reproduce this

document for standardization or other activities, or to reproduce portions of this document for these or other uses, must contact the IEEE Standards Department for the appropriate license. Use of information contained in this

- 24 unapproved draft is at your own risk.
- 25 IEEE Standards Department
- 26 Copyright and Permissions
- 27 445 Hoes Lane, P.O. Box 1331
- 28 Piscataway, NJ 08855-1331, USA
- 29

Introduction 1

- 2 (This introduction is not part of IEEE P802.11f, Recommended Practice for Multi-Vendor Access Point Interoperability 3 via Inter-Access Point Protocol Across Distribution Systems Supporting IEEE 802.11 Operation.)
- 4 See 9.3 of the IEEE Standards Style Manual for information on the Introduction. Use the heading 1 style for the
- Introduction and the paragraph style for succeeding paragraphs of text. (See Clauses 13 in this template for 5 6 information about styles.)

8 9 Stuart Kerry, Chair

- 10
- David Bagby, Chair, Task Group f Bob O'Hara, Editor, Task Group f 11
- 12

Put working group member names here

1 The following persons were on the balloting committee: (To be provided by IEEE editor at time of publication.)

2

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

ü

⁷ At the time this standard was completed, the working group had the following membership:

1 Contents

2	Introduc	ction	ü
3	1 Ov	erview	1
4	1.1	Scope	
5	1.2	Purpose	
6	1.3	Inter-AP recommended practice overview	
7	1.4	Inter-AP Security Risks	
8	2 Ret	ferences	4
9	3 De	finitions, abbreviations, and acronyms	5
10	4 IAI	PP Service definition	6
11	4.1	IAPP-INITIATE.request	
12	4.2	IAPP-INITIATE.confirm	8
13	4.3	IAPP-TERMINATE.request	9
14	4.4	IAPP-TERMINATE.confirm	9
15	4.5	IAPP-ADD.request	
16	4.6	IAPP-ADD.confirm	
17	4.7	IAPP-ADD.indication	
18	4.8	IAPP-MOVE.request	
19	4.9	IAPP-MOVE.confirm	
20	4.10	IAPP-MOVE.indication	
21	4.11	IAPP-MOVE.response	
22	5 Op	eration of the IAPP	
23	5.1	IAPP Protocol Overview	
24	5.2	Formation and maintenance of the ESS	
25	5.3	RADIUS Protocol Usage	
26	5.4	Support for 802.11 context transfer	
27	5.5	AP to AP Interactions	
28	5.6	AP specific MIB	
29	5.7	Single station association	
30	6 Pac	ket Formats	
31	6.1	General IAPP Packet Format	
32	6.2	ADD-notify Packet	
33	6.3	Layer 2 Update Frame	
34	6.4	MOVE-not ify Packet	
35	6.5	MOVE-response Packet	
36	6.6	Send-Security-Block packet	
37	6.7	ACK-Security-Block packet	
38	6.8	Information Element Definitions	
39	Annex A	A. Management Information Base	

40

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

iii

1 Figures

2	Figure 1 - AP Architecture with IAPP	2
3	Figure 2 - Primitive Relationships	7
4	Figure 3 - IAPP Message Exchange During STA Reassociation	
5	Figure 4 - RADIUS Vendor-Specific Attribute Format	22
6	Figure 5 - General IAPP Packet Format	27
7	Figure 6 - ADD-notify Data Field Format	28
8	Figure 7 - Layer 2 Update Frame Format	29
9	Figure 8 - MOVE-notify Data Field Format	29
10	Figure 9 - Information Element Format	30
11	Figure 10 - MOVE-response Data Field Format	30
12	Figure 11 - Send-Security-Block Data Field Format	31
13	Figure 12 - ACK-Security-Block Data Field Format	32

14 Tables

15	Table 1 - RADIUS Registration Access-Request Attributes	19
16	Table 2 - RADIUS Registration Access-Accept Attributes	19
17	Table 3 - RADIUS Access-Request Attributes	21
18	Table 4 - RADIUS Access-Accept Attributes	21
19	Table 5 - IAPP RADIUS Vendor-Specific Attributes	22
20	Table 6 - Information Elements in the New-BSSID-Security -Block	23
21	Table 7 - Command field values	
22	Table 8 - MOVE-notify Status Values	30
23	Table 9 - Information Elements in the Send-Security-Block Packet	
24	Table 10 - ESP Transform Identifiers	32
25	Table 11 - ESP Authentication Algorithm Identifiers	
26	Table 12 - IAPP Information Elements	33
27	Table 13 - Content of the New-AP-ACK-Authenticator	34

28 29

 $Copyright @ 2002 \ IEEE. \ All \ rights \ reserved.$ This is an unapproved IEEE Standards Draft, subject to change.

iv

- 1 Draft
- 2 **Recommended Practice for Multi-Vendor Access Point**
- **Interoperability via an Inter-Access Point Protocol**
- **Across Distribution Systems Supporting IEEE 802.11**
- **5** Operation

6 1 Overview

7 1.1 Scope

8 The scope of this document is to describe recommended practices for implementation of an Inter-Access Point Protocol

9 (IAPP) on a Distribution System (DS) supporting ISO/IEC 8802-11:1999, IEEE Standard 802.11, wireless LAN (WLAN) links.
 10 The recommended DS utilizes an Inter-Access Point Protocol that provides the necessary capabilities to achieve multi-

11 vendor Access Point (AP) interoperability within the DS. This IAPP is described for a DS consisting of IEEE 802 LAN

12 components utilizing an Internet Engineering Task Force (IETF) Internet Protocol (IP) environment. Throughout this

13 recommended practice, the terms ISO/IEC 8802-11:1999, IEEE 802.11, 802.11, and IEEE Std. 802.11-1999 are used

14 interchangeably to refer to the same document, ISO/IEC 8802-11:1999 and its amendments and supplements published at

15 the time this recommended practice was adopted.

16 **1.2 Purpose**

17 IEEE 802.11 specifies the MAC and PHY layers of a WLAN system and includes the basic architecture of such systems,

18 including the concepts of APs and DSs. Implementations of these concepts were purposely not defined by 802.11 because

there are many ways to create a WLAN system. Additionally, many of the possible implementation approaches involve higher network layers. While this leaves great flexibility in DS and AP functional design, the associated cost is that

21 physical AP devices are unlikely to interoperate across a DS. In particular, the enforcement of the restriction that astation

(STA) has a single association at a given time is unlikely to be achieved.

As 802.11 systems have grown in popularity, it has become clear that there are a small number of DS environments that
 comprise the bulk of the commercial and private WLAN system installations.

25 This recommended practice specifies the information to be exchanged between APs amongst themselves and higher layer

26 management entities to support the 802.11 DS functions. The information exchanges are specified for DSs built on the IETF 27 IP in a manner sufficient to enable the interoperation of DSs containing APs from different vendors that adhere to the

28 recommended practice.

29 1.3 Inter-AP recommended practice overview

- 30 This recommended practice describes a service access point (SAP), service primitives, a set of functions and a protocol
- 31 that will allow APs to interoperate on a common DS, using the Transmission Control Protocol over IP (TCP/IP) or User

32 Datagram Protocol over IP (UDP/IP) to carry IAPP packets between APs, as well as describing the use of the RADIUS

33 Protocol, so APs may obtain information about one another. The devices in a network that might use the IAPP are 802.11

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1	Delete	ed: AP		
-[Delete	ed: (IAP	P)	

Deleted: mobile

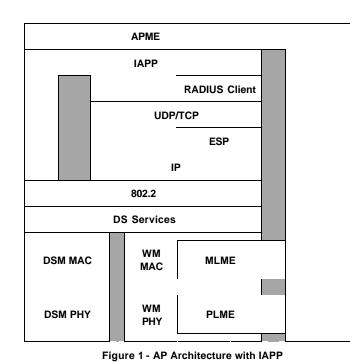
Deleted: this limitation has become an impediment to WLAN market growth. At the same time,

λ	Deleted: conformant
1	Deleted: u
-	Deleted: d
4	Deleted: p

APs. Other devices in a network that are affected by the operation of the IAPP are layer 2 networking devices, such as
 bridges and switches.

Throughout this recommended practice, reference is made to an "AP management entity" (APME). These are references to a function that is external to the IAPP, though likely still a function of the AP device. Typically, this management entity is the main operational program of the AP, implementing an AP manufacturer's proprietary features and algorithms, and incorporating the station management entity (SME) of 802.11. Figure 1 depicts an architecture of a typical AP in which the IAPP operates. The IAPP services are accessed by the APME through the IAPP SAP. The IAPP SAP is shown in Figure

8 1, as the line between the APME and the IAPP blocks. IAPP service primitives are defined that allow the AP management


9 entity to cause the IAPP to perform some function or to communicate with other APs in the DS or with a RADIUS server,

10 Other service primitives indicate to the AP management entity that operations have taken place at other APs in the DS that

11 can have an effect on information local to the AP.

12 The invocation of some IAPP service primitives relies on the RADIUS protocol to implement certain functions that are

- 13 required for the correct and secure operation of the IAPP. In particular, the IAPP entity must be able to find and use a
- 14 RADIUS server to look up the IP addresses of other APs in the ESS when given the BSSIDs of those other APs, and to
- 15 obtain security information to protect the content of certain IAPP packets.
- 16

17

The IAPP is not a routing protocol. The IAPP does not deal directly with the delivery of 802.11 data frames to the STA

18 The IAPP is not a routing protocol. The IAPP does not deal directly with the delivery of 802.11 data frames to the STA: 19 instead the DS utilizes existing network functionality for data frame delivery. The data delivery service of the DS will 20 function as desired when the <u>STA</u>s maintain a network layer address, e.g., IP address, or addresses that are valid for their

- 21 point of connection to the network, i.e., when an <u>STA</u> associates or reassociates, the <u>STA</u> must ascertain that its network
- 22 layer address(es) is configured such that the normal routing functions of the network attaching to the BSS will correctly
- 23 deliver the STA's traffic to the BSS to which it is associated. If the mobile device incorporating the STA determines that
- the network layer address(es) is not configured so as to allow the normal routing functions of the network to deliver the

25 STA's traffic to the BSS to which it is associated, the STA must obtain such an address(es), before any network traffic can

 $Copyright @ 2002 \ IEEE. \ All \ rights \ reserved.$ This is an unapproved IEEE Standards Draft, subject to change.

2

Deleted: a registration service

Deleted: station

Deleted: 802.11 Deleted: station

Deleted: 802.11 Deleted: station

Deleted: station

Deleted: station

Deleted: 802.11

Deleted: station

Deleted: station

Deleted: station

Deleted: to register as part of an ESS,

IEEE P802.11f/D3.1, April 2002

1	be delivered to it. A <u>STA</u> can meet the local IP address requirement in many ways. Two mechanisms for a <u>STA</u> to		Deleted: station
2	accomplish this are to renew a Dynamic Host Configuration Protocol (DHCP) lease for its IP address or to use Mobile IP.	\leq	Deleted: station
3	Other mechanisms are possible that meet this requirement.		Deleted: station
4 5	With the requirement that <u>STAs maintain a valid network layer address</u> , APs function much the same as 802.1D bridges. Additionally, the IAPP supports the following functions:		
6	• DS Services, as defined in ISO/IEC 8802-11:1999		
7 8	• Address mapping of wireless medium addresses of APs (their BSSID) to DS network layer addresses (IP addresses)		
9	Evolution of the IAPP through multiple versions		
10	• Formation of a DS		
11	• Maintenance of the DS		
12 13	 Enforcement of the restriction of ISO/IEC 8802-11:1999 that a <u>STA may have only a single association at any</u> given time 		Deleted: station
14	Transfer of STA context information between APs		Deleted: station
15	IAPP transactions are over the DS. Hence, IAPP is independent of the security scheme defined in ISO/IEC 8802-11:1999.		Deleted: All the IAPP transactions can make use of the security schemes employed over the distribution system
16	This recommended practice makes use of the IETF RFCs listed in clause 2 to implement many of its functions. It also relies	I	medium (DSM).
17 18	on a <u>STA</u> making use of the 802.11 Reassociation Request frame when roaming from one AP to another, in order to provide the most complete services to the APs using the IAPP. When a <u>STA</u> uses the 802.11 Association Request, rather than the		Deleted: station
19	Reassociation Request, the IAPP may not be able to notify the AP at which the STA was previously associated of the new		Deleted: station
20 21	association. This may result in the old AP (indicated in the "current AP" field of the reassociation request frame) maintaining context for the <u>STA</u> that has roamed to a new AP for a longer time than is strictly necessary. This may cause	1	Deleted: station
21	undue waste of resources at the old AP, as well as limiting the ability of the IAPP to help enforce the single STA		Deleted: station
23	association requirement of 802.11.		Deleted: station
			Formatted: Bullets and Numbering
24	1.4 Inter-AP Security Risks		
25 26 27	Inter-AP communications present three opportunities to an attacker. The attacker can use IAPP as a Denial-of-Service (DoS) attack against a STA state in its AP. It can capture MOVE packets to gather information on the STA that is roaming. It can act as a rogue AP in the ESS.		
28 29 30 31 32 33	A Bogus MOVE or ADD-Notify might cause an AP to drop all state it has with a STA. Since these IAPP packets are transmitted over IP, they could be in troduced anywhere, from any device that has the necessary knowledge. This attack can best be eliminated by providing packet authentication to all MOVE and ADDs. The protection for the MOVEs can be provided by an IPsec (ESP, RFC 2406) pair-wise Security Associations (SA). The protection for the ADDs requires a group IPsec Security Association. The content of the MOVE can be encrypted by the same IPsec pair-wise SAs, protecting it from scrutiny of an attacker.		
34 35 36 37	The use of IPsec with RADIUS for the Key Management provides for discovery of Rogue APs. The use of IPsec for IAPP MOVEs prevents a STA from roaming from a Rogue AP to a valid AP in the ESS. It also blocks the move of the STA context information to a Rogue AP if the STA roams to it. The RADIUS Access-Request provides the RADIUS server with knowledge of the presence of a Rogue AP		Deleted: Where 802.1X is used for
37 38			authentication, use of the Association Request instead of the Reassociation

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

3

Request will result in a reauthentication, potentially disrupting connectivity.

Deleted: 0

2 References 1

- 2 The following standards contain provisions which, through references in this text, constitute provisions of this standard.
- 3 At the time of publication, the editions indicated were valid. All standards are subject to revision.
- 4 IEEE Standard 802.11-19991
- 5 IEEE Standard 802.1X-2001 Port Based Network Access Control¹
- IEEE Standard 802.2-1998 Logical Link Control 6
- RFC 768 User Datagram Protocol² RFC 791 Internet Protocol² 7 Deleted: 0 8

 - 9 RFC 1112 - Host extensions for IP multicasting² 10
 - RFC 1305 Network Time Protocol version 3 specification²
 - RFC_1812 Requirements for IP version 4 Routers² 11
 - RFC 2131 Dynamic Host Configuration Protocol 12
 - 13 RFC 2181 - Clarifications to the DNS Specification²
 - 14 RFC_2401 - Security Architecture for the Internet Protocol²
 - 15 RFC_2406 - IP Encapsulating Security Payload (ESP)² RFC 2407 - The Internet IP Security Domain of Interpretation for ISAKMP² 16
 - 17 RFC_2411 - IP Security Document Roadmap²
 - RFC 2548 Microsoft Vendor-specific RADIUS Attributes² 18

 - RFC 2857 The Use of HMAC-RIPEMD-160-96 within ESP and AH² 19 20 RFC_2865 - Remote Authentication Dial In User Service (RADIUS)²
 - 21 RFC 2869 - RADIUS Extensions²

 - 22 RFC 3162 - RADIUS in IPv6²

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

¹ IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://www.standards.ieee.org/).

² Requests for Comments (RFCs) are available from the Internet Engineering Task Force (IETF) (www.ietf.org)

1

5

3 Definitions, abbreviations, and acronyms

2	AAA	Authentication, Authorization, and Accounting
3	AP	Access Point
4	APME	Access Point Management Entity
5	BSS	Basic Service Set
6	BSSID	Basic Service Set Identifier
7	DHCP	Dynamic Host Configuration Protocol
8	DS	Distribution System
9	DSM	Distribution System Medium
10	ESP	IP Encapsulating Security Payload
11	ESS	Extended Service Set
12	IANA	Internet Assigned Numbers Authority
13	IAPP	Inter-Access Point Protocol
14	IETF	Internet Engineering Task Force
15	IP	Internet Protocol
16	IPsec	Internet Protocol Security
17	LLC	Logical Link Control
18	MAC	Medium Access Control
19	MLME	MAC Layer Management Entity
20	PAE	Port Access Entity
21	PHY	Physical layer
22	PLME	PHY Layer Management Entity
23	RADIUS	Remote Authentication Dial In User Service
24	SA	Security Association
25	SAP	Service Access Point
26	SME	Station Management Entity
27	SPI	Security Parameter Index
28	SSID	Service Set Identifier
29	STA	Station
30	TCP	Transmission Control Protocol
31	UDP	User Datagram Protocol
32	URL	Uniform Resource Locator
33	VSA	Vendor-specific attribute
34	WM	Wireless Medium
35	XID	Exchange Identifier

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1 4 IAPP Service definition

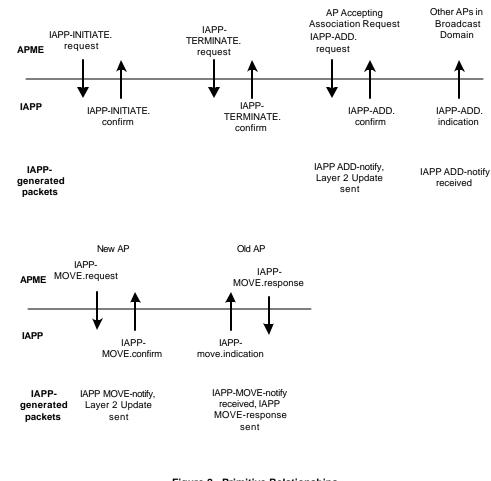
2 The IAPP entity provides services to an AP in which it resides through the IAPP SAP. The SAP allows the management

3 entity of the AP (APME) to invoke IAPP services and receive indications of service invocations at other APs in a single

4 ESS. This clause defines the services that are available at the SAP. There are four service types that exist at the SAP. 5 They are requests, confirms, indications, and responses. Service requests and responses are submitted to the IAPP entity

6 by the entity a the next higher layer. In this document, the next higher layer is the APME. Service confirms and

7 indications are delivered by the IAPP entity to the entity at the next higher layer.


8 This clause provides an abstract description of the services that an implementation should provide in order to interoperate 9 with other implementations of the IAPP. This is not an exposed interface. A diagram of the relationships between the 10 primitives is shown in Figure 2.

11

 $Copyright © 2002 \ IEEE. \ All \ rights reserved.$ This is an unapproved IEEE Standards Draft, subject to change.

P802.11f/D3.1, April 2002

IEEE

1 2

Figure 2 - Primitive Relationships

4.1 IAPP-INITIATE.request 3

Inter-Access Point Protocol

- 4 4.1.1 Function
- 5 This service primitive causes the AP to initialize the IAPP entity, including its data structures, functions, and protocol.

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1

3 4 5

12

13

14

15

16

17

4.1.2 Semantics of the service primitive

2 The IAPP-INITIATE.request has the following semantics.

Ine IAPP-INITIATE.request has the following semantics.	
IAPP-INITIATE.request {	Formatted: French (France)
TCP Port,	·
UDP Port,	
Shared Secret,	
IP Address,	
BSSID Secret	
	Deleted: and TCP
The <u>UDP</u> Port parameter is the UDP port number to be opened for the IAPP for transmission and <u>reception</u> of IAPP packets.	Deleted: receipt
The TCP Port parameter is the TCP port number that the IAPP entity opens to listen for new IAPP TCP connections from	
the IAPP entities of other APs.	
	Deleted: protect
The Shared Secret is used to provide confidentiality of hidden attributes, and integrity and authentication for the	
communication between the RADIUS server and the AP. See 5.3.	
·	
The IP address is the IP address or fully qualified domain name of the RADIUS server.	
	Deleted: protect

18 The BSSID Secret is used to provide integrity, authentication and confidentiality of the security block sent between the

19 RADIUS server and the AP. <u>See</u> 5.3

20 4.1.3 When generated

21 This service primitive is generated by an APME to initiate the operation of the IAPP. At the time the IAPP-

22 INITIATE.request is generated, the BSS controlled by this AP should not be operating, and no STAs should be associated

- with this AP. If necessary, the APME can issue an 802.11 MLMERESET.request prior to generation of the IAPP-
- 24 INITIATE.request.

25 4.1.4 Effect of receipt

26 Upon receipt of this service primitive from an APME, the IAPP entity sends the RADIUS Initiate-Request and receives the

27 RADIUS Initiate-Accept or Initiate-Reject. If the Initiate-Accept is received, then the IAPP entity initializes its data

structures, functions, and protocols. The port for the IAPP should be opened by the IAPP entity at this time. The previous information in any IAPP data structures is lost. If an Initiate Reject is received, the IAPP does not start.

30 4.2 IAPP-INITIATE.confirm

31 4.2.1 Function

32 This service primitive notifies an APME that the actions begun by an IAPP-INITIATE.request have been completed.

33 4.2.2 Semantics of the service primitive

34 The IAPP-INITIATE.confirm primitive has the following semantics.

- 3536 IAPP-INITIATE.confirm {
- 37 Status 38 }

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

8

Deleted: station

1 The Status parameter indicates the result of the corresponding IAPP-INITIATE request. The allowable value for the Status

- 2 parameter are SUCCESSFUL, RUNNING, and FAILURE. SUCCESSFUL status should be returned if the IAPP entity is abb
- 3 to complete its initialization and open the requested port for the IAPP. RUNNING status should be returned if the IAPP 4 entity receives an IAPP-INITIATE request when the entity is already running. When RUNNING status has been returned
- entity receives an IAPP-INITIATE.request when the entity is already running. <u>When RUNNING status has been returned</u>,
 the IAPP ignored the parameters from the corresponding IAPP-INITIATE.request and the operation of the IAPP was
- 6 unaffected. FAILURE status should be returned otherwise.

7 4.2.3 When generated

8 This service primitive is generated when the actions begun by an IAPP-INITIATE.request are completed or the invocation 9 of that primitive has failed.

10 4.2.4 Effect of receipt

11 Upon receipt of the IAPP-INITIATE.confirm(Status=SUCCESS FUL) corresponding to a previously issued IAPP-

12 INITIATE.request, an APME should initialize the operation of the AP by issuing an 802.11 MLMESTART.request

13 primitive to the local 802.11 MLME. The APME should not issue an 802.11 MLME-START.request until an IAPP-

14 INITIATE.confirm(Status=SUCCESSFUL) is received, i.e., to ensure that all associations in this BSS are reported to the ESS

15 using IAPP, the AP should not begin operating until after the IAPP-INITIATE.confirm(Status=SUCCESSFUL) is received.

16 4.3 IAPP-TERMINATE.request

17 4.3.1 Function

18 This service primitive causes the IAPP entity to cease operation of the IAPP functions and protocol.

19 4.3.2 Semantics of the service primitive

- 20 The IAPP-TERMINATE.request primitive has the following semantics.
- 21 22 IAPP-TERMINATE.request {
- 23 }

24 4.3.3 When generated

25 This service primitive is generated by an APME when it is desired to terminate the operation of the IAPP entity. The APME should terminate operation of the local BSS, including disassociation of any associated STAs and ceasing of

- 27 beacon transmissions, prior to terminating IAPP operation. The sole or final action by the APME in termination of local
 28 BSS operation should be issuance of an MLME-RESET.request. The IAPP-TERMINATE.request should be generated
- 29 upon receipt of the corresponding MLME-RESET.confirm,

30 4.3.4 Effect of receipt

31 The UDP and TCP ports for the IAPP should be closed and the IAPP entity should cease operations.

32 4.4 IAPP-TERMINATE.confirm

33 4.4.1 Function

34 This service primitive notifies an APME that the actions begun by an IAPP-TERMINATE.request have been completed.

Deleted: The AP should disassociate any stations with which it is associated and cease accepting new associations before this primitive is invoked. The MLME-RESET.request primitive should be issued to the local 802.11 MLME to prevent further sending of Beacon frames before this primitive is invoked.

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

9

Deleted: the BSS of the AP should not be operating until the IAPP-INITIATE.confirm is received 1

4.4.2 Semantics of the service primitive

2 The IAPP-TERMINATE.confirm primitive has the following semantics.

3
4 IAPP-TERMINATE.confirm {
5 Status
6 }

7 The Status parameter indicates the result of the corresponding IAPP-TERMINATE.request. The allowable value for the 8 Status parameter is SUCCESSFUL.

9 4.4.3 When generated

10 This service primitive is generated by the IAPP entity when the actions begun by an IAPP-TERMINATE.request are 11 completed.

12 4.4.4 Effect of receipt

Upon receipt of the IAPP-TERMINATE.confirm corresponding to a previously issued IAPP-TERMINATE.request, the APME should make no further service requests to the IAPP SAP without starting the IAPP entity again, using the IAPP-

15 INITIATE.request primitive. Furthermore, the APME should not issue an MLME-START.request primitive prior to receipt

16 of the subsequent IAPP-INITIATE.confirm primitive which indicates that the IAPP has been restarted successfully.

17 4.5 IAPP-ADD.request

18 4.5.1 Function

19 This service primitive is used when a <u>STA</u> associates with the AP using an 802.11 association request frame. The function 20 of the IAPP-ADD.request primitive is two-fold. One purpose of this primitive is to cause the forwarding tables of layer 2 21 internetworking devices, e.g. bridges and switches, to be updated. This updates the layer 2 internetworking devices before 22 a transmission from the associating STA, which might occur some arbitrary amount of time after the association. The

second purpose of this primitive is to notify other APs within the <u>multicast domain, i.e., that portion of a network in which</u> a layer two frame addressed to a multicast address can be received, of the <u>STA</u>'s new association, to allow those APs to clean up context information left behind by STAs that do not properly reassociate when moving from one AP to another.

26 4.5.2 Semantics of the service primitive

- 27 The IAPP-ADD.request primitive has the following semantics.
- 2829 IAPP-ADD.request {

30

31

32

33

MAC Address, Sequence Number, Timeout

}

34 The MAC Address is the address of the STA that recently has successfully associated with the AP.

35 The Sequence Number is the value of the 802.11 Sequence Number field of the Association Request frame received from

the association <u>STA</u>. The sequence number is provided to aid the APME in other APs in the determination of whether the association represented by this <u>IAPP-ADD</u> request is the most recent association for the <u>STA</u> identified by the MAC

- association represented by this IAPP-ADD.request is the most recent association for the <u>STA</u> identified by the MAC
 Address. The 802.11 sequence number <u>may be</u> an ambiguous indication of the most recent association. But, this
- 39 information may be useful to an algorithm makinga determination of the location of the most recent association of a STA
- 40 The Timeout parameter is the value, in seconds that the IAPP-ADD.confirm primitive will be generated with a status of 41 TIMEOUT, if both the ADD-notify packet (see 6.2) and the Layer 2 Update frame (see 6.3) have not been sent. The

 $Copyright @ 2002 \ IEEE. \ All \ rights \ reserved.$ This is an unapproved IEEE Standards Draft, subject to change.

Deleted: station

Deleted: station

Deleted: broadcast

Deleted: station

1	Deleted: station
	Deleted: station
	Deleted: is not
1	Deleted: un
١	Deleted: this

10

IEEE	
802.11f/D3.1, April 2002	

Р

1 TIMEOUT status will not be generated by the IAPP-ADD.confirm only when both the ADD-notify packet and Layer 2 2 Update frame have been transmitted before the expiration of the period indicated by the Timeout parameter.

3 4.5.3 When generated

4 This service primitive should be generated by an APME when <u>the local AP generates an 802.11 MLME-</u> 5 ASSOCIATE.indication.

6 4.5.4 Effect of receipt

- 7 Receipt of this service primitive should cause the following actions to occur:
- 8 1) The IAPP entity sends a Layer 2 Update frame to the DS, addressed such that it will cause <u>forwarding tables in</u> Jayer 2 devices that receive the frame to be updated so that all future traffic received by those Jayer 2 devices is forwarded to the port on which the frame was received,
- The IAPP entity notifies the APs in the local <u>multicast domain of the DS of the association between the AP and</u>
 <u>STA</u> by sending an IAPP ADD-notify packet to the <u>IAPP IP multicast</u> address. <u>See RFC 1112</u>.

13 4.6 IAPP-ADD.confirm

14 4.6.1 Function

This service primitive is used to confirm that the actions initiated by an IAPP-ADD.request have been completed and inform an APME of the status of those actions.

17 4.6.2 Semantics of the service primitive

}

- 18 The IAPP-ADD.confirm primitive has the following semantics.19
- 20 IAPP-ADD.confirm { 21 Status

22

23 The Status parameter indicates the success or failure of the corresponding IAPP-ADD.request. The allowable values for 24 this parameter are SUCCESSFUL, FAIL and TIMEOUT. SUCCESSFUL status indicates that the corresponding IAPP-

ADD.request was able to send both the IAPP ADD-notify packet and Layer 2 Update frame before the timeout expired.
 FAIL indicates that for some reason, the IAPP ADD-notify packet and the Layer2 Update frame could not be sent at all.
 TIMEOUT status indicates that one or both of the ADD-notify packet and Layer 2 Update frame were not sent before the

TIMEOUT status indicates that one or both of the ADD-notify packet and Layer 2 Update frame were not sent before the timeout expired.

29 4.6.3 When generated

30 This service primitive is generated upon completion of the actions of the IAPP-ADD.request or expiration of the timeout 31 specified in the corresponding IAPP-ADD.request primitive.

32 4.6.4 Effect of receipt

33 Upon receipt of this service primitive by an APME with Status=SUCCESSFUL, the APME should cause the DS Services to

- 34 begin forwarding frames for the associated <u>STA</u>. <u>Receipt of this primitive with Status=TIMEOUT should cause the APME</u>
- to attempt to determine the cause of the failure to send the ADD-notify packet and Layer 2 Update frames and possibly
 invoke the IAPP-ADD.request again. When Status=FAIL, the STA's association should be denied or the STA
- 37 disassociated.

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

11

Deleted:

Deleted: station

4	Deleted: the
1	Deleted: any
4	Deleted: bridges
+	Deleted: broadcast
-	Deleted: station
4	Deleted: subnet broadcast

Deleted: an

1 4.7 IAPP-ADD.indication

2 4.7.1 Function

The IAPP-ADD indication primitive is used to indicate to an APME that an association relationship has been established
between a <u>STA</u> and another AP in the DS.

5 4.7.2 Semantics of the service primitive

- 6 The IAPP-ADD indication primitive has the following semantics.
- 8 IAPP-ADD.indication {

9

10

11

MAC Address, Sequence Number

12 The MAC Address is the address of the <u>STA</u> received in the IAPP ADD-notify packet.

13 The Sequence Number is the value of the 802.11 Sequence Number field of the Association Request frame received from

- 14 the associating <u>STA as received by the local IAPP entity in the ADD-notify packet</u>. The sequence number is provided to
- 15 aid the APME in the determination of whether the association represented by this IAPP-ADD.indication is the most recent 16 association for the STA identified by the MAC Address. The 802.11 sequence number is not an unambiguous indication

16 association for the <u>STA</u> identified by the MAC Address. The <u>802.11</u> sequence number is not an unambiguous indication 17 of the most recent association. But, this information may be useful to an algorithm making this determination.

18 4.7.3 When generated

19 This service primitive is generated upon receipt of an IAPP ADD-notify packet from the DS.

20 4.7.4 Effect of receipt

21 Upon receipt of this service primitive the APME should determine if the <u>STA</u> indicated by the MAC Address is shown to

22 be associated with the AP receiving the IAPP-ADD indication, with a sequence number older than that in the IAPP ADD-23 notify packet. If so, this service primitive should cause the generation of an 802, 11 MLMEDISASSOCIATE request by the

- notify packet. If so, this service primitive should cause the generation of an 802.11 MLME-DISASSOCIATE.request by the
 APME. If the sequence number received in the IAPP ADD-notify packet is older than that received from the <u>STA when it</u>
- associated with the AP receiving the IAPP ADD-notify packet, the APME should ignore the indicated association and
- 26 issue an IAPP-ADD.request

Implementers of <u>STA</u> MAC entities are advised of the importance of continuing the sequential assignment of sequence
 numbers for <u>outgoing MPDUs and MMPDUs</u> throughout <u>STA</u> operation, as required by 802.11. A discontinuity in the
 sequence numbering at the time of reassociation could cause roaming in an IAPP environment to be unreliable.

30 4.8 IAPP-MOVE.request

31 4.8.1 Function

32 This primitive should be issued by the APME when it receives an MLME-REASSOCIATE.indication from the MLME

33 indicating that an STA has reassociated with the AP. It causes a frame to be sent to the DS that will update forwarding

tables for the newly reassociated STA, and will notify the DS of the new reassociation between the AP and STA. An

- 35 attempt to send an IAPP MOVE-notify packet to the AP with which the reassociating <u>STA</u> was previously associated will
- 36 also be made.

37 4.8.2 Semantics of the service primitive

38 The IAPP-MOVE.request primitive has the following semantics.

39

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change. Deleted: mobile station

Deleted: mobile station

Deleted: station

Deleted: station

Deleted: station

	Deleted: station
ć	Deleted: to ensure that layer two devices are properly informed of the location of the station's most recent association
1	Deleted: station
1	Deleted: management frames
1	Deleted: station
1	Deleted: -1999
I	Deleted: is

-	Deleted: station
4	Deleted: station
Y	Deleted: station

1 2 3 4 5 6	IAPP-MOVE.request { MAC Address, Sequence Number, Old AP, Context Block, Timeout	
7	}	
8	The MAC Address is the address of the STA that recently has successfully reassociated with the AP.	Deleted: station
9	The Sequence Number is the value of the 802.11 Sequence Numb er field of the Reassociation Request frame received from	
10	the reassociating STA. The sequence number is provided to aid the APME in other APs in the determination of whether	Deleted: station
11 12	the association represented by this IAPP-MOVE.request is the most recent association for the <u>STA</u> identified by the MAC Address. The 802.11 sequence number is not an unambiguous indication of the most recent association. But, this	Deleted: station
13	information may be useful to an algorithm making this determination.	Deleted: station
14 15	Old AP is the MAC address of the AP with which the reassociating <u>STA was last associated</u> . This value is obtained by the APME from the Current AP Address field of the 802.11 Reassociation Request frame.	Deleted: station
16 17	The Context Block is the context to be sent to the Old AP. Otherwise, the Context Block is null. The Context Block is a container for information defined in 802.11 that is to be forwarded from one AP to another upon the reassociation of a STA.	Deleted: by other
		Deleted: standards
18 19 20	The Timeout parameter value is the number of seconds expected for both the IAPP MOVE-notify packet and the Layer 2 Update frame to be sent and the IAPP MOVE-response packet received. Failure to send both messages and receive a response in this time results in the IAPP-MOVE.confirm primitive being generated with a status of TIMEOUT.	Deleted: mobile station
21	4.8.3 When generated	
22 23	This service primitive is generated by an APME when the MLME <u>receives</u> an 802.11 MLME-REASSOCIATE.indication from the local AP.	Deleted: generates
24	4.8.4 Effect of receipt	
25	Receipt of this service primitive should cause the following actions to occur:	I
26 27	1) The IAPP entity determines the DSM layer 3 address of the AP identified by the old BSSID presented in the reassociation request and the security information needed to communicate with that AP using the methods	

- 2/ reassociation request and the security informati 28 described in clause 5.
- 2) The IAPP entity requests any context stored at the AP with which the STA was previously associated to be
 30 forwarded to the AP with which the STA is currently associated by sending an IAPP MOVE-notify packet to the
 31 old AP.

32 4.9 IAPP-MOVE.confirm

33 **4.9.1 Function**

34 This service primitive is used to confirm that the actions initiated by an IAPP-MOVE.request have been completed and 35 inform an APME of the status of those actions.

36 4.9.2 Semantics of the service primitive

- The IAPP-MOVE.confirm primitive has the following semantics.
- 39 IAPP-MOVE.confirm {

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change. bridges is forwarded to the port on which the frame was received,¶ Formatted: Bullets and Numbering Deleted: station Deleted: station

Deleted: <#>The IAPP entity sends

a Layer 2 Update frame to the DS,

addressed such that it will cause the

forwarding tables in any bridges that receive the frame to be updated so that all future traffic received by those

1	MAC Address,		
2	Sequence Number,		
3	Old AP,		
4	New BSSID,		
5	Context Block,		
6	Status		
7	}		
		/	Deleted: station
8	The MAC Address is the address of the STA from the corresponding IAPP-MOVE.request.		·
9	The Sequence Number is the value of the 802.11 Sequence Number field of the Reassociation Request frame received from		
10	the reassociating <u>STA</u> .		Deleted: station
			Deleted: station

 11
 Old AP is the MAC address of the AP with which the reassociating STA was last associated. This value is obtained by

 12
 the IAPP from the received MOVE-notify packet.

13 The New BSSID parameter is the WM MAC address of the AP with which the STA has reassociated.

14 The Context Block is the context returned by the Old AP, if the Status is SUCCESSFUL. Otherwise, the Context Block is

15 null. The Context Block is a container for information defined by other 802.11 standards that is to be forwarded from one

16 AP to another upon the reassociation of a <u>STA</u>. If the Old AP does not return any context information, the Context Block

17 can be null, even when the status is SUCCESSFUL.

The Status parameter indicates the result of the corresponding IAPP-MOVE.request. The allowable values for this 18 parameter are SUCCESSFUL, STALE_MOVE, MOVE_DENIED, NOT_OPERATING, FAIL, and TIMEOUT. The TIMEOUT 19 20 status indicates the corresponding IAPP-MOVE.request primitive was not able to complete the transmission of both the 21 IAPP MOVE-notify packet and IAPP Layer 2 Update frame, as well as receive the IAPP MOVE-response packet before the 22 timeout parameter of the IAPP-MOVE.request primitive expired. The STALE_MOVE status indicates that the 23 corresponding IAPP-MOVE.request did not complete successfully, because the IAPP MOVE-response packet returned by 24 the Old AP contained a status value indicating a stale move. MOVE DENIED indicates that the AP receiving the IAPP-25 MOVE.indication either is not able to verify a previous association by the indicated STA or has some other reason to deny 26 the reassociation at the AP that sent the IAPP Move-notify packet. NOT_OPERATING indicates that the IAPP-27 MOVE request was invoked either before an IAPP-INITIATE request was invoked or after an IAPP-TERMINATE request was invoked. FAIL indicates that a RADIUS Access-Reject was received in response to the RADIUS Access-Request 28 29 sent to the RADUS server to look up the IP address of the Old AP.

30 4.9.3 When generated

This service primitive is generated upon receipt of context information from the Old AP in an IAPP MOVE-response packet as a result of the Old AP's use of the IAPP-MOVE.response primitive or expiration of the timeout specified in the corresponding IAPP-MOVE.request primitive.

34 4.9.4 Effect of receipt

Upon receipt of this service primitive by an APME with SUCCESSFUL status, the APMEshould send a Laver 2 Update 35 36 frame to the DS, addressed such that it will cause the forwarding tables in any bridges that receive the frame to be updated 37 so that all future traffic received by those bridges is forwarded to the port on which the frame was received and should 38 cause the DS services to begin forwarding frames for the reassociated <u>STA</u> Completion of the IAPP-MOVE.request includes receipt of <u>STA</u> context from the Old AP, when the Status is SUCCESSFUL. When the Status is not SUCCESSFUL, 39 40 the APME should disassociate the STA indicated by the MAC Address parameter, using the 802.11 MLME-41 DISASSOCIATE request primitive with a Reason Code of 1, meaning "Unspecified Reason". Future revisions of the IEEE Std 802.11 may define a new Reason Code that means "Old AP did not verify previous association." Should this Reason 42 43 Code be defined, it should be used in preference to Reason Code 1.

> Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

	station
ed:	station
ed:	This value is obtained by the

Deleted: This value is obtained by the APME from the Current AP Address field of the 802.11 Reassociation Request frame.

Deleted: mobile station

-1	Deleted: station
	Deleted: station
	Deleted: station

1 4.10 IAPP-MOVE.indication

2 4.10.1 Function

2		Deleted: station	
3	This service primitive is used to indicate that a STA has reassociated with another AP.		
4	4.10.2 Semantics of the service primitive		
5	The IAPP-MOVE.indication primitive has the following semantics.		
6 7	IAPP-MOVE.indication {		
8	MAC Address,		
9	New BSSID		
10	Sequence Number,		
11	AP Address,		
12	Context Block		
13	}		
14	The MAC Address is the address of the STA that has reassociated with the AP that sent the IAPP MOVE-notify packet.	Deleted: 802.11	
14	The MAC Address is the address of the 21A that has reassociated with the AF that sent the FAFT MOVE-houry packet.	Deleted: station	
15	The New BSSID parameter is the WM MAC address of the AP sending the IAPP MOVE-notify packet.		
16	The Sequence Number is the value of the 802.11 Sequence Number field of the Reassociation Request frame received from		
17	the reassociating <u>STA</u> . The sequence number is provided to aid the APME in the determination of whether the association	Deleted: station	
18	represented by this IAPP-ADD.request is the most recent association for the STA identified by the MAC Address. The	Deleted: station	=
19	802.11 sequence number is not an unambiguous indication of the most recent association. But, this information may be	Deleted. station	ر
20	useful to an algorithm making this determination.		
21	The AP Address is the DSM IP address of the AP sending the IAPP MOVE-notify packet.		
m			
22 23	The Context Block is the context sent by the AP indicated by the AP Address. Otherwise, the Context Block is null. The Context Block is a container for information defined by other 802.11 standards that is to be forwarded from one AP to		
23 24	another upon the reassociation of a <u>STA</u> .	Deleted: mobile station	
21		Deleted. mobile station)
25	4.10.3 When generated		
26	This service primitive is generated when an IAPP MOVE-notify packet is received.		
27	4.10.4 Effect of receipt		

28 29	Upon receipt of this service primitive with a sequence number indicating a more recent association than that at the receiving AP (if any), the AP should forward any relevant context related to the reassociated <u>STA</u> to the AP with which the		Deleted: station
30	STA is now associated by using the IAPP-MOVE.response primitive and process any context received in the Context	[Deleted: station
31	Block received. "Relevant" context for a <u>STA</u> is defined as those information elements that other 802.11 standards require		Deleted. station
32	to be forwarded when a STA reassociates. If the received sequence number does not represent a more recent association		Deleted: station
33	than that at the AP where the IAPP-MOVE indication is received, the APME should ignore the indicated reassociation, the		Deleted: station
34	APME should issue an IAPP-MOVE.response with a status of STALE_MOVE that will cause an IAPP MOVE-response		
35	packet to be sent to the AP that originated the IAPP MOVE-notify packet, and the APME should issue an IAPP-		Deleted: current
36	MOVE.request primitive of its own to ensure that all layer 2 devices are properly informed of the correct location of the		
37	STA's most recent association.		Deleted: station

Copyright © 2002 IEEE. All rights reserved.	
This is an unapproved IEEE Standards Draft, subject to change.	

4.11 IAPP-MOVE.response 1

2 4.11.1 Function

9

10

11

12

13

14

15

3 This service primitive is used to send any relevant context resident in the AP issuing this primitive to another AP when a

STA has reassociated with that other AP. "Relevant" context for a STA is defined as those information elements that 4

5 other 802.11 standards require to be forwarded when a <u>STA reassociates</u>.

6 4.11.2 Semantics of the service primitive

- 7 The IAPP-MOVE.response primitive has the following semantics. 8
 - IAPP-MOVE.response { MAC Address, Sequence Number, AP Address. Context Block, Status
- The MAC Address is the address of the STA that has reassociated with the AP identified by the AP Address. 16

17 The Sequence Number is the value of the 802.11 Sequence Number field of the Reassociation Request frame received from 18 the reassociating STA.

- 19 The AP Address is the DSM IP address of the AP where the STA has reassociated.
- 20 The Context Block is the context for the reassociated STA. The Context Block may be null.

21 The Status parameter indicates the result of the corresponding IAPP-MOVE.indication. The allowable values for this 22 parameter are SUCCESSFUL, MOVE_DENIED, and STALE_MOVE. STALE_MOVE should be used to indicate that the AP 23 receiving the IAPP-MOVE.indication has a current association with the STA indicated by the MAC Address parameter 24 with a more recent sequence number than that in the IAPP-MOVE.indication. MOVE_DENIED should be used to indicate 25 that the AP receiving the IAPP-MOVE indication either is not able to verify a previous association by the indicated STA or 26

has some other reason to deny the reassociation at the AP that sent the IAPP Move-notify packet.

27 4.11.3 When generated

28 This service primitive should be generated by the APME when an IAPP-MOVE.indication is received.

29 4.11.4 Effect of receipt

30 Upon receipt of this service primitive, the AP forwards all relevant context related to the reassociated STA and the Status 31

to the peer IAPP entity in the AP with which the STA is now associated by sending the IAPP MOVE-response packet. 32 Any context for the STA identified by the MAC Address parameter may be discarded upon issuance of this response.

5 **Operation of the IAPP** 33

The IAPP is a communication protocol, used by the management entity of an AP to communicate with other APs, when 34 35 various local events occur in the AP. It is a part of a communication system comprising APs, STAs, an arbitrarily

connected DS, and RADIUS infrastructure containing one or more RADIUS servers. The RADIUS servers provide two 36

functions, mapping the BSSID of an AP to its IP address on the DSM and distribution of keys to the APs to allow the 37

38 encryption of the communications between the APs. The function of the IAPP is to facilitate the creation and maintenance

> Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

-{	Deleted: station
\neg	Deleted: station
\prec	Deleted: station

IFFF

P802.11f/D3.1, April 2002

Deleted:	802.11
Deleted:	station
Deleted:	station
Deleted:	MAC
Deleted:	802.11
Deleted:	station
Deleted:	station

Deleted: station

	
1	Deleted: station
-	Deleted: station
	Deleted: station
Υ	Deleted: receipt

1	Deleted:	mobile	station	

1 2	of the ESS, support the mobility of <u>STAs</u> , and enable APs to enforce the requirement of a single association for each <u>STA</u> at a given time, as stated in ISO/IEC 8802-11:1999.		Deleted: 802.11stationmobile stationIAPP also removes the need for reauthentication with 802.1X
3	5.1 IAPP Protocol Overview	1	when moving between access points, enabling seamless connectivity, and reducing the load on the backend
4 5 6	IAPP supports two protocol sequences. One is initiated by invoking the IAPP-ADD.request after the APME receives an MLME-ASSOCIATE.indication, and the other is initiated by invoking the IAPP-MOVE.request after the APME receives an MLME-REASSOCIATE indication.	_	authentication server. [1] Deleted: associate request to an
7	MLME-REASSOCIATE.indication		Access Point a reassociate req
8 9 10 11 12 13 14 15 16	When the IAPP receives an JAPP-ADD request it should send an IAPP ADD-notify packet and a Layer 2 Update Frame. The IAPP ADD-notify packet is an IP packet with a destination -IP-address of the JAPP IP multicast address, the source IP and MAC address of the AP. The message body contains the MAC address of the STA and the Sequence Number from the Association request sent by the STA. On receiving this message the APME should check its association table and remove an association with the STA if it exists and is determined to be older than the association incited by the ADD- notify packet. Note that purpose of the IAPP ADD-notify packet is to remove stale associations, not to modify the learning table. The learning table update is done by the Layer 2 Update frame (see sec.6.3). This frame has the source MAC address of the associating STA. This frame is used by receiving APs and other layer 2 devices to update their learning table.	1	Deleted: an APassociate PLevelsubnet broadcast message ([3]
17	5.1.2 Actions triggered by an IAPP-MOVE.request		Deleted: reassociate request
18 19 20	When <u>the IAPP</u> receives an <u>JAPP-MOVE</u> request it should send an <u>IAPP</u> M <u>OVE</u> . Notify <u>packet</u> to the <u>old</u> AP and get back a M <u>OVE</u> gesponse from the <u>old</u> AP. The <u>IAPP MOVE</u> . Response carries the Context block for the STA's association from the old AP to the <u>new AP</u> .	1	Deleted: an APassociate noveoldoveRold- oveold-STA, allowing the new-STA to replicate the prior connection context without reauthenticating.
21 22 23 24	The IAPP_MOVE-Notify and MOVE-Response are IP packets carried in a TCP session between APs. The IP address of the old-AP must be found by mapping the BSSID from the reassociate message to its IP address. This mapping is done using a RADIUS exchange. For this exchange any standard RADIUS server that supports the Call Check service-type should work.		This is commonly called a fast- handoff. [4] Deleted: MoveMove [5]
25 26 27 28	If it is desired to encrypt the <u>IAPP_MOVE-gesponse</u> packet, then the RADIUS Reply to the new AP will include, in addition to the IP address of the old -AP, reply items with Security Blocks for both the new and old AP. The <u>Security Blocks each</u> contain a shared secret for AP-AP connection, and are encrypted using the AP's password in the RADIUS registry. The RADIUS server would have to have an add-on to create the Security Block.		Deleted: MoveRs
29 30 31 32 33	The new-AP sends the Security Block for the old-AP, which it received from the RADIUS Server, as a Send-Security-Block packet. This is the first message in the IAPP TCP exchange between the APs. The old-AP returns ACK-Security-Block packet. At this point both APs have the shared secret and it is used to encrypt all further packets for this exchange between the APs are encrypted. Figure 3 is an overview of the protocol triggered by the reassociation request.		Deleted: sbassociate ref [7]
34			
35	Figure 3 - IAPP Message Exchange During STA Reassociation		
36	5.2 Formation and maintenance of the ESS, RADIUS (UDP)		Deleted: , the Registration Service
37 38 39 40 41	An ESS is a set of Basic Service Sets (BSSs) that form a single LAN, allowing an <u>Sing Reflection BSSID</u> , from one BSS to another throughout the ESS. As described in ISO/IEC 8802-11:19993th Ascesszakceept [APH: space: START.request(BSSType=Infrastructure) establishes the formation of an ESS. Subsequent APs that are interconnected by a common DS and that are started with the same SSID extend the ESS created by the first. IAPP is defined to be able to provide a secure handoff mechanism of <u>STA</u> information between APs in the same ESS. IAPP <u>can</u> use a central RADIUS		Deleted: Deleted: 802.11mobile stationmobile STAs

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

Inter-Access Point Protocol P802.11f/D3.1, April 2002 registry to define AP members of an ESS. Three levels of support for ESS formation are possible with the IAPP capabilities 2 described here: 1) no administrative or security support; 2) support for dynamic mapping of BSSID to IP addresses; and 3) 3 support for encryption and authentication of IAPP messages. Level one support can be achieved by configuring each AP 4 in the ESS with the BSSID to IP address mapping for all other APs in the ESS. This may be acceptable for a small ESS. 5 Many ESS providers will need levels 2 or 3, which requires RADIUS support. The remainder of this section describes 6 requirements for level 2 and 3 support. Deleted: T 7 To include RADIUS support, the RADIUS server and the AP RADIUS client must be configured with the shared secret and with each other's IP address. This must be done prior to the first AP in an ESS becoming operational. Each AP acting 8 9 as a RADIUS client should have its own shared secret with the RADIUS server, different from that of any other AP, 10 containing the damage caused by the compromise of the key at any single AP to only the compromised AP. Deleted: reassociate 11 Since the roaming STA sends an 802.11 reassociation request frame to the new AP containing the BSSID it is roaming from, each RADIUS server must also be configured with the following information for each BSSID. From an IAPP point of view, 12 13 this set of BSSID entries defines the members of an ESS. 14 BSSID a) Deleted: 128 15 b) RADIUS BSSID Secret at least 160 bits in length 16 c) IP address or DNS name, and 17 d) Cipher suites supported by the AP for the protection of IAPP communications. If an APME is going to use the services of IAPP, additional steps, internal to the AP, are necessary. Before the issuance 18 19 of the MLME-START.request(BSSType=Infrastructure), the APME should issue the IAPP-INITIATE.request Deleted: and the receipt of an MLME-START.confirm(ResultCode=SUCCESS) 20 The IAPP entity is invoked by the APME to initiate STA context transfer between the old AP and the new AP. The IAPP Deleted: may invoke RADIUS to obtain mapping of the old BSSID to the DSM IP address of the old AP and the security information 21 Deleted: from 22 with which to secure the communications with the peer IAPP entity. 5.3 RADIUS Protocol Usage 23 24 For the IAPP entity to function correctly, it must have the ability to discover the DSM IP address of the old BSSID in the 25 ESS using the old BSSID as a lookup key. To implement this capability, the use of the RADIUS Protocol (IETF RFCs 2865 **Deleted: 2138** 26 and 2869) is recommended. RADIUS is also used to obtain the security information to secure the communication between 27 IAPP entities. This address mapping and security information may be preloaded or cached. Formatted: Bullets and Numbering 28 5.3.1 RADIUS Registration Access-Request 29 Upon receipt of an IAPP-INITIATE request primitive, the AP Formatted: Numbered+ Level: 1 + 30 should register as a valid member of the ESS, and NumberingStyle:a, b, c, ... + Startat: 1 + Alignment:Left + Alignedat: 0.25" + Tab after: 0.5" + Indentat: 0.5" 31 b) may establish a secure channel for broadcast communications all APs in the ESS. Formatted: Bullets and Numbering 32 To register the AP's membership in the ESS, and to obtain the security parameters necessary for establishing a secure 33 broadcast connection with all the other APs in the ESS, the AP sends a RADIUS Registration Access-Request packet to 34 the RADIUS server with a Service-Type of IAPP-Register. The Registration Access-Request packet uses the AP's BSSID 35 as the User-Name, the AP's BSSID Secret as the User-Password, and contains the global SSID as a vendor-specific attribute. This enables the RADIUS server to register the BSSID as a part of the ESS, and also to store the AP's BSSID 36

> Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

Secret. The Registration Access-Request also contains the list of the AP's supported ESP and AH transforms, which

allows the RADIUS server to determine the appropriate common supported ciphersuite(s) to use for the ADD-Notify and

37 38

39

MOVE-Notify packets.

18

IFFF

1 The RADIUS Registration Access-Request contains the following attributes:

- 2
- 3

Table 1 - RADIUS Registration Access-Request Attributes

Attribute Number	Attribute Name	Value
<u>1</u>		BSSID. The BSSID should be represented in ASCII format, with octet values
		separated by a "-". Example: "00-10-A4-23-19-C0".
<u>2</u>	User-Password	BSSID Secret, determined by the AP
4	NAS-IP-Address	AP's IP Address
6	Service-Type	IAPP-Register (number TBD ³)
26	Vendor-Specific	The following IEEE 802.11 vendor-specific attributes:
<u>26-802-4</u> ³	<u>SSID</u>	The ASCII text SSID which denotes the ESS in which the BSSID is registering
<u>26-802-5</u> ³	Supported-ESP-Authentication-	The list of ISAKMP ESP Authentication IDs corresponding to the ESP Authentication
	<u>Algorithms</u>	algorithms supported by this AP (see Table 11)
<u>26-802-6</u> ³	Supported-ESP-Transforms	The list of ISAKMP ESP Transform IDs corresponding to the ESP transforms
		supported by this AP (See Table 10)
<u>32</u>	NAS Identifier (optional)	AP's NAS Identifier
<u>80</u>	Message Authenticator	The RADIUS message's authenticator

4 Per RFC 2865, other RADIUS attributes may be included in the Registration Access-Request packet in addition to the ones

listed above. 5

6

7 5.3.2 RADIUS Registration Access-Accept

8 Upon receipt of a Registration Access-Request from the AP, the RADIUS Server verifies that the AP is a valid member of

the ESS. If the RADIUS Server permits the AP entrance into the ESS, it returns a Registration Access-Accept packet. 9

Receipt of a valid RADIUS Registration Access-Accept packet both confirms that the AP is a valid member of the ESS, and 10 11

also provides the AP with the appropriate security information for establishing a secure group communications channel for IAPP. For key rollover purposes, the parameters obtained by the AP from the RADIUS Registration Access-Accept 12

should be cached for use in sending ADD-Notify packets. 13

14 When the RADIUS server responds with a Registration Access-Accept, the packet should contain the following 15 attributes:

16

Table 2 - RADIUS Registration Access-Accept Attributes

<u>Attribute</u> <u>Number</u>	Attribute Name	Value
1	User-Name	BSSID
6	Service-Type	IAPP-Register (number TBD ³)
<u>26</u>	Vendor-Specific	The following IEEE 802.11 vendor -specific attributes (optional);
<u>26-802-7</u> ³	ESS-New-ESP-Transform-Key	The ESP Transform key used to encrypt ADD-Notify packets when sending
<u>26-802-8</u> ³	ESS-New-ESP-Authentication-Key	The ESP Authentication key used to authenticate ADD-Notify packets when
		sending
<u>26-802-9</u> ³	ESS-Old-ESP-Transform-Key	The ESP Transform key that can be used to decrypt ADD-Notify packets when
		receiving, if the New -ESP Transform-Key does not work
<u>26-802-10</u> 3		The ESP Authentication key that can be used to authenticate ADD-Notify packets
		when receiving, if the New -ESP-Authentication-Key does not work
<u>26-802-11</u> ³	ESS-ESP-Transform-ID	ESP Transform ID of the algorithm to use when encrypting/decrypting ADD-Notify
		packets
<u>26-802-12</u> ³	ESS-ESP-Authentication-D	ESP Authentication ID of the algorithm to use when encrypting/decrypting ADD-
		Notify packets
<u>26-802-13</u> ³	ESS-ESP-SPI	SPI used to identify ESP group SA

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

19

Formatted: Bullets and Numbering

19

20 21 22

23

24

IEEE P802.11f/D3.1, April 2002

	27	Session-Timeout	Number of seconds until the AP should reissue the Registration Access-Request packet to the RADIUS Server to obtain new keying information]	
	<u>80</u>	Message-Authenticator	The RADIUS message's authenticator		
1 2			v-ESP-Authentication-Key, ESS-Old-ESP-Transform-Key, and ESS-Old-ESP as described for the MS-MPPE-Send-Key attribute in RFC 2548.	-	
3 4	Per RFC 2865 listed above.	5, other RADIUS attributes may	be included in the Registration Access-Accept packet in addition to the one	<u>s</u>	
5	<u>5.3.3 RAI</u>	DIUS Registration Access-R	sject	•	Formatted: Bullets and Numbering
6 7 8 9	AP is a valid Transform o	member of the ESS. A Regis	stration Access-Request from the AP, the RADIUS Server will verify that the tration Access-Reject may be issued due to an AP not supporting the ESF m selected for use in securing the ADD-Notify, or for other RADIUS	5	
10 11 12	AP's Registr	ration Access-Request packet	P is not a valid member of the ESS, the RADIUS Server will respond to the with an RADIUS Registration Access-Reject. The RADIUS Registration e IAPP-INITIATE.confirm (ResultCode= FAILURE).	-	
13	<u>5.3.4</u> RAE	DIUS Access-Request		-	Formatted: Bullets and Numbering
14	Upon receipt	of an IAPP-MOVE.request prim	tive, the receiving AP,		Deleted: R Deleted: must establish
15	<u>a) mus</u>	<u>t establish</u> that the Old BSSID is	a valid member of the New BSSID's ESS, and	•	Formatted: Bullets and Numbering
16	b) <u>may</u>	establish a secure channel for c	mmunications with the Old BSSID		Deleted: optionally Deleted: ,
17 18	2	3 ,	so to obtain the security parameters necessary for establishing a secure AP sends a RADIUS Access-Request packet to the RADIUS server. The		·

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

RADIUS Access-Request packet is used to verify the identity of the Old AP, and to establish the communications parameters between the New AP and the Old AP. The parameters obtained in the RADIUS Access-Accept are used to communicate with the Old AP, and can be cached for use upon receipt of future IAPP-MOVE request primitives. It is

important to note that this RADIUS Access-Accept verifies the old BSSID, and does not authenticate the STA.

The RADIUS Access-Request contains the following attributes:

Table 3 - RADIUS Access-Request Attributes

<u>Attribute</u> <u>Number</u>	Attribute Name	Value	Deleted: Attribute Number
1	User-Name	Old BSSID. The Old BSSID should be represented in ASCII format, with octet values separated by a "-". Example: "00-10-A4-23-19-C0".	Deleted: Attribute Name [Size]
2	User-Password	NULL	Deleted: Value
4	NAS-P-Address (optional)	New AP's IP Address	· · · · · · · · · · · · · · · · · · ·
6	Service-Type	Call Check (10)]
26	Vendor - Specific	The following IEEE 802.11 vendor-specific attributes:	
26-802- 1 ³	IAPP-Liveliness-Nonce (optional)	A 32-byte nonce used to ensure liveliness of the secure IAPP traffic. This attribute should not be included if secure IAPP communications are not required by the AP.	
30	Called-Station-Id	The WM MAC Address of the new BSSID with which the STA is reassociating, in ASCII format, with octet values separated by a "-". Example: "00-10-A4-23-19-C0". The SSID should be appended to the WM MAC address, separated from the MAC address with a ":". Example "00-10-A4-23-19-C0. Company WLAN".	Deleted: SHOULD Deleted: AP1
32	NAS-Identifier (optional)	New BSSID's NAS Identifier	1
61	NAS-Port-Type	new value assigned for IAPP ³	
80	Message-Authenticator	The RADIUS message's authenticator]

2 Per RFC 2865, other RADIUS attributes may be included in the Access-Request packet in addition to the ones listed above.

3 5.3.5 RADIUS Access-Accept

4 Upon receipt of an Access-Request from the New BSSID, the RADIUS Server will verify that the Old BSSID is a valid

5 member of the ESS of which the New BSSID is a member. If the RADIUS Server determines that the Old AP and New AP

should be able to communicate with each other via IAPP, the RADIUS Server will respond to the New AP's Access-6

Request packet with an Access-Accept packet. The RADIUS Access-Accept packet both confirms that the Old BSSID is a 7

8 valid member of the ESS, and also provides both the Old and New AP with the appropriate security information for

9 establishing a secure communications channel.

10 When the RADIUS server responds with Access-Accept, the Access-Accept packet should contain the following 11 attributes:

Table 4 - RADIUS Access-Accept Attributes

Attribute Number	Attribute Name	Value		Deleted: Attribute
1	User-Name	Old BSSID	-	
8	Framed-IP-Address	Old BSSID's IP Address	-	Formatted: Left
26	Vendor-Specific	The following IEEE 802.11 vendor-specific attributes:		Formatted: Left
26-802-2 ³	New -BSSID-Security-Block (optional) Security Block encrypted using new BSSID's user-password, to be decrypted and used by the new BSSID		Formatted: Left
26-802-3 ³	Old-BSSID-Security-Block (optional)	Security Block encrypted using old BSSID's user-password, to be sent via IAPP from the new BSSID to the old BSSID, and decrypted and used by the old BSSID		Formatted: Left
80	Message-Authenticator	The RADIUS message's authenticator	•	Formatted: Left

13 Per RFC 2865, other RADIUS attributes may be included in the Access -Accept packet in addition to the ones listed above.

14 The New-BSSID-Security-Block VSA carries the security information needed by the new AP to decrypt and encrypt ESP

15 packets. The New-BSSID-Security-Block is defined in 5.3.7.2 Deleted: data field of new AP security block Deleted: The format of the data field for this packet is shown in 7.

Formatted: Bullets and Numbering

³ Editor's Note: This value will be applied for and inserted when received.

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

21

12

5.3.6 RADIUS Access-Reject Deleted: ¶ As described in 5.3.5, upon receipt of an Access-Request from the New AP, the RADIUS Server will verify that the Old BSSID is a valid member of the ESS. If the RADIUS Server determines that the Old BSSID and New AP should NOT be able to communicate with each other via IAPP, the RADIUS Server will respond to the AP's Access-Request packet with a RADIUS Access-Reject._ The RADIUS Access-Reject packet instructs the New AP to issue an MLME-REASSOCIATE.confirm(ResultCode= REFUSED) for the STA that caused the original MLME.REASSOCIATE.request primitive. 5.3.7 IAPP RADIUS vendor-specific attributes Table 5 contains a list of the RADIUS Vendor-Specific Attributes (VSAs) used by the IAPP. The IEEE 802.11 vendor code is TBD⁴. Per RFC 2865, RADIUS Vendor-Specific Attributes should have the following form:

RADIUS Attribute Type (26)	Attribute Length	Vendor-ID (TBD ⁵)	Vendor Type	Vendor Length	Attribute Data
Octets: 1	1	4	1	1	n

Figure 4 - RADIUS Vendor-Specific Attribute Format

Table 5 - IAPP RADIUS Vendor-Specific Attributes

Vendor Type	Attribute Name	Description
1	IAPP-Liveliness-Nonce	A 32-byte nonce used to ensure liveliness of the secure IAPP traffic. This attribute should not be included if secure IAPP communications are not required by the AP.
2	New -BSSID-Security-Block	Security Block encrypted using new BSSID's user -password, to be decrypted and used by the new BSSID
3	Old-BSSID-Security-Block	Security Block encrypted using old BSSID's user-password, to be sent via IAPP from the new BSSID to the old BSSID, and decrypted and used by the old BSSID
<u>4</u>	SSID	The ASCII text SSID which denotes the ESS in which the AP is registering its BSSID
5	Supported-ESP-Authentication- Algorithms	The list of ISAKMP ESP Authentication IDs corresponding to the ESP Authentication algorithms supported by this AP (see Table 8)
<u>6</u>	Supported-ESP-Transforms	The list of ISAKMP ESP Transform IDs corresponding to the ESP transforms supported by this AP (See Table 7)
<u>7</u>	ESS-New -ESP-Transform-Key	The ESP Transform key used to encrypt ADD-Notify packets when sending
<u>8</u>	ESS-New -ESP-Authentication-Key	The ESP Authentication key used to authenticate ADD-Notify packets when sending
<u>9</u>	ESS-Old-ESP-Transform-Key	The ESP Transform key that can be used to decrypt ADD-Notify packets when receiving, if the New -ESP-Transform-Key does not work
<u>10</u>	ESS-Old-ESPAuthentication-Key	The ESP Authentication key that can be used to authenticate ADD-Notify packets when receiving, if the New -ESP Authentication-Key does not work

⁴ Vendor code has been requested from IANA and will be entered upon receipt.

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

P802.11f/D3.1, April 2002

IEEE

Length of Security Block [9] Formatted: Bullets and Numbering Field CodeChanged Formatted: Font: 10 pt Formatted: Heading3

Formatted: Caption

12 13

3

4

5

6

7

8

9

10

11

15

⁵ Vendor code has been requested from IANA and will be entered upon receipt.

	11	ES	SS-ESP-Transform-ID	ESP Transform ID of the algorithm to use when		
				encrypting/decrypting ADD-Notify packets		
	<u>12</u>	ES	SS-ESP-Authentication-ID	ESP Authentication ID of the algorithm to use when		
				encrypting/decrypting ADD-Notify packets		
	<u>13</u>		SS-ESP-SPI	SPI used to identify ESP group SA.		
	14	Ne	ew - BSSID-Security - Block-IV	A 4-byte nonce used as the initialization vector to encrypt and decrypt the New-BSSID-Security-Block attribute		
						Formatted: Bullets and Numbering
1	<u>5.3.7.1 IA</u>	PP-Liveline	ess-Nonce			
2	The LADD Li	veliness Non	ca VSA is a 32 byte popea u	sed to ensure liveliness of the secure IAPP traffic. This attrib	uto	
3	should not be	included if s	secure IAPP communications a	re not required by the AP.	Jule	
						Formatted: Bullets and Numbering
4	5.3.7.2 Ne	w-BSSID-S	Security-Block			,
5	The New-BS	SID-Security.	Block is a Security Block er	crypted using new BSSID's user-password, to be decrypted a	and	
6				that contains the security information from the RADIUS Server		
7				d be interpreted by the new AP, and should not be passed or		
8	other APs.					
9				This block is encrypted with the new AP's RADIUS BSSID Sec		
10				S-ESP-Transform-ID attribute of the RADIUS Registration Acco		
11 12				rity Block using the ESS-ESP-Authentication-ID algorithm, a rith New-BSSID-Security-Block-IV as IV) and its RADIUS BSS		
12				tication keys are derived from the RADIUS BSSID Secret by f		
13				1st SHA1) $\ \dots$ The transform key is the first N bits and		
15				nd M are dependent on the cipher suite). The new AP creates		
16				it caches these SAs, uses the lifetime to remove the SAs from		
17				in Figure 9. Information elements are defined to have a comm		
18				eld, a 2 octet length field, and a variable-length element-spec		
19 20				ement ID as defined below. The Length field specifies the num	<u>iber</u>	
20	of octets in the	e Information	<u>n neid.</u>			
21		<u>Ta</u>	ble 6 - Information Eleme	nts in the New-BSSID-Security-Block		
22						
	Element ID	Length		Information	l	
	2	8	Security lifetime in seconds		İ	
	<u>3</u>	<u>32</u>	ACK nonce		ļ	
	4	1	ESP transform number			
	5	1	ESP authentication number			
	<u>6</u> 7	<u>4</u> Variable	SPI used to identify ESP SA to key used by ESPTransform for			
	8	Variable		n for ESP packets to the old AP	ł	
	9	4	SPI used to identify ESP SA fro			
	10	Variable	key used by ESP Transform fo		i	
	11	Variable		n for ESP packets from the old AP	İ	
23	5.3.7.3 OI	d-BSSID-Se	ecurity-Block		•	Formatted: Bullets and Numbering
			-			
24				ypted using old BSSID's user-password, to be decrypted and u		
25						
26				nterpreted by the new AP, but should not be passed on to the	<u>old</u>	
27	AP. The conte	ents of the O	ld -BSSID-Security -Block attri	bute are defined in 6.6.	I	

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

i	Inter-Access Point Protocol P80.	IEEE 2.11f/D3.1, April 2002	
1	<u>5.3.7.4 SSID</u>		Formatted: Bullets and Numbering
2 3	The SSID VSA is the ASCII text string SSID which denotes the ESS in which the AP is re RADIUS VSAs have a separate length value, the SSID is not null-terminated.	egistering its BSSID. Since	
4	5.3.7.5 Supported-ESP-Authentication-Algorithms	•	Formatted: Bullets and Numbering
5 6	The Supported-ESP-Authentication-Algorithms VSA is a list of consecutive one-byte value Authentication IDs corresponding to the ESP Authentication algorithms supported by this AP (
7	5.3.7.6 Supported-ESP-Transforms	-	Formatted: Bullets and Numbering
8 9	The Supported-ESP-Transforms VSA is a list of consecutive one-byte values that are ISA corresponding to the ESP Transformation algorithms supported by this AP (see Table 10 for value).		
10	5.3.7.7 ESS-New-ESP-Transform-Key	-	Formatted: Bullets and Numbering
11 12 13	The ESS-New-ESP-Transform-Key VSA contains the ESP Transform key used to encrypt and de transmitted and received by this AP. If a received ADD-Notify packet does not correctly decry Transform-Key, the ESS-Old-ESP-Transform-Key should be used to decrypt the ADD-Notify packet does not correctly decrypt the ADD-Notify packet does no	pt using the ESS -New-ESP-	
14	The contents of this VSA are encrypted as described for the MS-MPPE-Send-Key attribute in R	FC 2548.	Formatted: Bullets and Numbering
15	5.3.7.8 ESS-New-ESP-Authentication-Key	-	Tormatted. Bunetsand Numbering
16 17 18 19	The ESS-New-ESP-Authentication-Key VSA contains the ESP Authentication key used to packets transmitted and received by this AP. If a received ADD-Notify packet does not pass au New-ESP-Authentication-Key, the ESS-Old-ESP-Authentication-Key should be used to aut packet.	thentication using the ESS -	
20	The contents of this VSA are encrypted as described for the MS-MPPE-Send-Key attribute in R	FC 2548.	
21	5.3.7.9 ESS-Old-ESP-Transform-Key	-	Formatted: Bullets and Numbering
22 23 24	The ESS-Old-ESP-Transform-Key VSA contains the ESP Transform key used only to decrypt Al by this AP if the received ADD-Notify packet does not correctly decrypt using the ESS-New-ES should never be used to encrypt ADD-Notify packets sent from this AP.		
25	The contents of this VSA are encrypted as described for the MS-MPPE-Send-Key attribute in R	<u>FC 2548.</u>	
26	5.3.7.10 ESS-Old-ESP-Authentication-Key	-	Formatted: Bullets and Numbering
27 28 29	The ESS-Old-ESP-Authentication-Key VSA contains the ESP Authentication key used only t packets received by this AP if the received ADD-Notify packet does not pass authentication Authentication-Key. This key should never be used to authenticate ADD-Notify packets sent for	n using the ESS-New-ESP-	
30	The contents of this VSA are encrypted as described for the MS-MPPE-Send-Key attribute in R	FC 2548.	
31	5.3.7.11 ESS-ESP-Transform-ID	-	Formatted: Bullets and Numbering
32 33 34 35	The ESS-ESP-Transform-ID VSA is a one-byte attribute that denotes the ESP Transform algorit server for encrypting and decrypting the ADD-Notify packets, using values selected from Table algorithm is also used to encrypt and decrypt the New-BSSID-Security-Block and Old-BSSI sent in the RADIUS packets.	e 10. The selected transform	
	Copyright © 2002 IEEE. All rights reserved.		

This is an unapproved IEEE Standards Draft, subject to change.

	Inter-Access Point Protocol	IEEE P802.11f/D3.1, April 2002		
1	5.3.7.12 ESS-ESP-Authentication-ID	•		Formatted: Bullets and Numbering
2 3 4 5	The ESS-ESP-Authentication-ID VSA is a one-byte attribute that denotes the ESP Authent RADIUS server for authenticating the ADD-Notify packets, using values selected is authentication algorithm is also used to authenticate the New-BSSID-Security-Block attributes sent in the RADIUS packets.	from Table 11. The selected	1	
6	5.3.7.13 ESS-ESP-SPI	•		Formatted: Bullets and Numbering
7 8	The ESS-ESP-SPI VSA is a 4-byte attribute that is the Security Parameter Index which is us lookup the correct group SA for the ADD-Notify packet protection.	ed by all members of the ESS to	,	
9	5.3.7.14 New-BSSID-Security-Block-IV	•		Formatted: Bullets and Numbering
10 11	The New-BSSID-Security-Block-IV VSA is an 8byte nonce used as the initialization ver New-BSSID-Security-Block attribute.	ctor to encrypt and decrypt the		
12	5.4 Support for 802.11 context transfer		\langle	Deleted: IAPP has no special requirements for RADIUS Access- Reject packets.¶
13 14	There are no requirements from the existing mechanisms of IEEE 802.11-1999 for the IA between APs. However, should such mechanisms be defined that establish a requirement		X	Formatted: Bullets and Numbering Deleted: authentication
15	information between APs, that information will be carried in the Context Block of JAPP MC		\mathbb{N}	Deleted: authentication
16 17	packets. The cryptographic protection of the information in the Context Block, should suc the responsibility of the standard defining the format of the information element carrying th		////	Deleted: authentication
			<u> </u>	Deleted: other authentication
18	5.5 AP to AP Interactions		///	Deleted: authentication
			- \Y	Deleted: an
19 20 21 22 23 24	5.5.1 Station Move Process The interaction between APs in an ESS when a STA is added to the STAs associated with reassociation request frame minimally comprises the exchange of the IAPP MOVE-not messages by the new AP at which the reassociation occurs and the old AP that formerly as well as the transmission of a Layer 2 Update frame by the new AP. If security is needed IAPP MOVE-response packets, they are wrapped in ESP.	tify and IAPP MOVE-response held the association of the STA,	ľ	Deleted: IAPP can be used to move AAA context between access points, as described in Annex B. This enables the transfer of 802.1X context, enabling roaming without re- authentication.
25	The purpose of exchanging the IAPP MOVE-notify and MOVE-response packets is to all	llow the new AP and old AP to		

ω	The purpose of exchanging the IAFF MOVE-houry and MOVE-lesponse packets is to allow the new AF and old AF to
26	exchange STA context information. An example of this STA context information is STA security information that may
27	allow faster reauthentication of a STA on reassociation. The purpose of transmitting the Layer 2 Update frame is to cause
28	any layer 2 devices, such as bridges and switches, to update any forwarding information they may hold regarding the STA
29	identified by the MAC address in the SA field of the frame, so that frames destined for the STA are delivered to a point in

30 the DS where the new AP can forward these frames into the BSS containing the STA.

The SPIs and keys for the Security Associations (SAs) for ESP are created by the RADIUS Server and s ent to the new AP 31

as the New-BSSID-Security-Block and Old-BSSID-Security-Block RADIUS Attributes. The new AP decrypts the New-32 BSSID-Security-Block using the configured cipher and its RADIUS BSSID Secret. The new AP creates the SAs from the 33

34 information in the Security Block and if it caches these SAs, uses the lifetime to remove the SAs from its cache.

The new AP sends the old -BSSID-Security-Block to the old AP in the IAPP Send-Security-Block packet. The old AP 35 authenticates and decrypts this Security Block using the configured cipher (with Date/Time as IV), HMAC-MD5, and its 36

37 RADIUS BSSID Secret. The cipher and HMAC keys are derived from the RADIUS BSSID Secret by first expanding the

secret by: $SHA1(secret)|SHA1(secret)|SHA1(secret)|Ist SHA1)||\dots$ The cipher key is the first N bits and the authentication key is the next M bits (the values of N and M are dependent on the cipher suite). The new AP creates the SAs from the information in 38

39

40 the Security Block and if it caches these SAs, uses the lifetime to remove the SAs from its cache. If the old AP already has

41 SAs with the IP address of the new AP, it checks the date/time stamp received against the date/time stamp used to create

42 the old SAs. If the stamp just received is greater, it removes the old SAs, and uses the new. If the stamps are the same, all

> Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

Deleted: password	
Deleted: password	
Deleted: password	
Deleted: w	
Inserted: wy	
Deleted: password	
Deleted: secret	

the rest of the Security Block content is the same and can be dropped. If the stamp just received is less, this is an invalid
 reply and should be ignored.

3

The old AP takes the New-AP-ACK-Authenticator and sends it to the new AP in the IAPP ACK-Security-Block packet.
The new AP authenticates and decrypts the New-AP-ACK-Authenticator using the configured cipher (with Date/Time as
IV), HMAC-MD5, and its RADIUS BSSID Secret. The same password expansion routine is used here. It compares the nonce in this block with the nonce it received in the New-BSSID-Security-Block. If they are the same, the old AP is ready to receive the IAPP MOVE-notify protected with ESP. If they do not match, there was some attack or failure. The new AP
CAN wait to see if another IAPP ACK-Security-Block packet arrives with the proper nonce or the new AP can resend the IAPP Send-Security-Block packet.

11 5.5.2 Station Add Process

The interaction between APs in an ESS₄s a result of an <u>AP receiving an 802.11</u> association request frame comprises the transmission by the AP at which the association occurs of an IAPP ADD-notify packet and the transmission of a Layer 2 Update frame. The IAPP ADD-notify packet is sent to the <u>JAPP IP multicast</u> address. The Layer 2 Update frame is sent to the MAC broadcast address and uses the MAC address of the STA that has associated as the MAC source address for the frame. See clause 6.2 for further information on the IAPP ADD-notify packet and clause 6.3 for further information on

17 the Layer 2 Update frame.

The purpose of transmitting the IAPP ADD-notify packet is to provide an indication to an AP that may have held an older association of a STA that has more recently associated with another AP that the AP holding that older association may discard any context for that STA. This should allow for more efficient management of AP resources. The purpose of transmitting the Layer 2 Update frame is to cause any layer 2 devices, such as bridges and switches, to update any forwarding information they may hold regarding the STA identified by the MAC address in the SA field of the frame, so that frames destined for the STA are delivered to a point in the DS where the new AP can forward these frames into the BSS containing the STA.

There is no security provided for the Layer 2 Update frame. If security is needed for the IAPP ADD-notify packet, it is
 wrapped in ESP. The Layer 2 Update frame does not open new potentials for attacks against the WLAN or the STAs.
 However, the ADD-notify is a UDP IP frame that COULD be sent from anywhere in the DS and attack the AP's s tate for the
 STA.

29 The SPI and keys for the Security Association (SA) for ESP are created by the RADIUS Server and sent to the AP as the 30 RADIUS Attributes. The AP creates the SA from the information in the RADIUS response, caches the SA, and uses the 31 resist ration session timeout to remove the SA from its cache.

At any time, there could be two broadcast SPIs for the ESS, as lifetime expires on each AP and the AP performs a new
 RADIUS Registration Access-Request/Access-Accept interaction. ADD-Notify packets are always sent with the newest
 SA, but the old SA might be needed to decrypt a received ADD-Notify.

35 **5.6 AP specific MIB**

An SNMP MIB using SMIv2 for the IAPP is defined in Annex A. The MIB contains attributes for the IAPP that are useful
 in monitoring and diagnosis of the operation of the IAPP.

38 **5.7** Single station association

39 IEEE 802.11 specifies that each <u>STA</u> may only be associated with a single AP at any given time. (See 802.11-1999

40 subclauses 5.4.2.2 and C.2) When a STA changes its association from one AP to another, the STA issues a reassociation

41 request frame (as specified in the 802.11 standard). Reception of the reassociate frame and granting of the association by

42 the new AP causes the APME in that AP to issue an IAPP-MOVE.request service primitive. This causes an IAPP MOVE-

43 notify packet to be sent to the Old AP, requesting the old AP to remove the <u>STA</u> from its table, to forward any stored

 $Copyright © 2002 \ IEEE. \ All \ rights \ reserved.$ This is an unapproved IEEE Standards Draft, subject to change.

Deleted: when a STA is added to the STAs associated with an AP

Deleted: subnet limited broadcast

Deleted: There is no security provided for
the IAPP ADD-notify packet or the Layer 2
Update frame. Neither the IAPP ADD-
notify packet nor the Layer 2 Update frame
open new potentials for attacks against the
WLAN or the mobile STAs that did not exist
without the presence of these transmissions. ¶
Formatted: Bullets and Numbering
Formatted: Bullets and Numbering Deleted: Station
Deleted: Station
Deleted: Station Deleted: station

1 2	context for the <u>STA</u> , and the new AP to add the <u>STA</u> and context to its own table. Thus, the use of the reassociation request frame by the <u>STA</u> allows the APs to ensure that there is only a single association for the <u>STA</u> .						Deleted: station Deleted: station
3 4 5 6 7 8	association requirement by sending an IAPP ADD-notify packet and the Layer 2 Update frame to the DS. Because this packet is addressed to the subnet -local broadcast address (see 6.2), this packet may not reach all APs in an ESS. In particular, if the ESS spans multiple subnets, neither the ADD-notify packet nor the Layer 2 Update frame is likely to reach the APs on subnets other than the one on which the transmissions originate. If the old AP receives the IAPP ADD-notify						Deleted: mobile station Deleted: station Deleted: station Deleted: or when the AP holding the roaming station's previous association cannot be found using RADIUS,
9 10	6 Packet Formats 6.1 General IAPP Packet Format						Deleted: station Deleted: station
11 12 13	The general format of an The port number assigned		Figure 5. An IAPP pacl	ket is carried in the TCP	or UDP protocols over IP.	Ī	
15	IAPP Version	Command	Identifier	Length	Data	•	Formatted Table
	Octets: 1	1	2	2	0-n		

14

Figure 5 - General IAPP Packet Format

6.1.1 IAPP Version Field 15

- The IAPP Version Field indicates the protocol version of the IAPP, and thus the organization of the rest of the packet. The 16
- value of the Version field for this protocol is zero. All other values are reserved. A device that receives a packet with an <u>JAPP Version level that it does not support should</u> silently discard the packet. 17
- 18

19

6.1.2 Command Field 20

This is an &bit integer value that identifies the specific function of the packet. The data field that is specific to that 21 22

command follows each command field.

23 24

25

Table 7 - Command field values

Value	Command
0	ADD-notify
1	MOVE-notify
2	MOVE-response
3	Send-Security-Block
4	ACK-Security-Block
5-255	Reserved

26

d. the "TBD" will be replaced with the actual value(s).

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change. 1

Deleted: higher revision Deleted: than

Deleted: s

Deleted: will

1 Identifier Field 6.1.3

- 2 The two-octet Identifier field aids in matching requests and responses. When sending an IAPP request packet, the value 3 of the Identifier field should be unique, with respect to other outstanding packets. When sending an IAPP response
- 4 packet the value of the Identifier field will be a copy the value of the Identifier field from the received request packet. The 5 Identifier field can be used to help detect duplicate requests and responses. Duplicate requests and responses should be silently discarded. 6

7 6.1.4 Length Field

8 The two-octet Length field indicates the length of the entire packet, including the version, command, identifier, length and 9 data fields. Octets outside the range of the Length field should be treated as padding and ignored on reception. If the 10 packet is shorter than the Length field indicates, it should be silently discarded.

11 6.1.5 Data Field

- 12 The Data Field is a variable length field, the content of which is dependent on the value of the Command field. The content
- of the Data Field is described in 6.2, 6.4, and 6.5 for each of the packet types. 13

14 6.2 ADD-notify Packet

The ADD-notify packet is sent, using the IAPP over UDP and IP, on the local LAN segment to notify any AP that receives 15 16 it that the <u>STA</u> identified in the packet has associated at the AP sending the packet. The packet is sent to the <u>JAPP IP</u> 17 multicast address (see RFC 1112), so that it will reach every device on the DSM local subnet, even if the LAN is switched.

18 The ADD-notify packet carries the MAC address and sequence number from the STA that has associated with the AP. The format of the packet data field is shown in Figure 6. 19

Address Length	Reserved	MAC Address	Sequence Number
Octets: 1	1	n = Address Length	2

Figure 6 - ADD-notify Data Field Format

22 The Address Length is an 8bit integer that indicates the number of octets in the MAC Address. This field allows the 23 extension of the IAPP to IEEE 64-bit MAC addresses, when those become generally deployed. The Reserved field is 24 reserved in this version of the protocol and should be sent with a value of zero. The Reserved field should be ignored on 25 reception. The length of the Reserved field is one octet, in order to align the MAC Address field on a 16-bit boundary. 26 The MAC Address is the MAC address of the STA that has associated. The length of the MAC Address field is equal to the value of the Address Length field. The Sequence Number field contains the integer value of the sequence number of 27 28 the association request frame received by the AP from the STA that has associated. Allowable values for the Sequence 29 number are between 0 and 4095.

6.3 Layer 2 Update Frame 30

- 31 The Layer 2 Update frame is an 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) Update response frame.
- This frame is sent using a MAC source address equal to the MAC address of the <u>STA</u> that has associated, so that any 32
- 33 layer 2 devices, e.g., bridges, switches and other APs, can update their forwarding tables with the correct port to reach the
- 34 new location of the <u>STA</u>. The format of an XID Update frame carried over 802.3 is shown in Figure 7. The 802.3 MAC 35
- header is shown as an example only. Other MAC protocols than 802.3 may be used.

36

20

21

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

Deleted: Any
Deleted: that is sent in response to the receipt of another IAPP packet will
Deleted: into the Identifier field of the packet sent in response
Deleted: A duplicate request can be detected if it has the same source IP address and port and Identifier within a short span of time.
Deleted: MUST
~

Deleted:	mobile station
Deleted:	subnet limited broadcast
Deleted:	18
Deleted:	mobile station

Deleted: station)
·	

Deleted: station

+	Deleted: mobile
۲	Deleted: station
-	Deleted: mobile
Y	Deleted: station

IEEE P802.11f/D3.1, April 2002

MAC DA	MAC SA	Length	DSAP	SSAP	Control	XID Information Field
Octets: 6	6	2	1	1	1	3

1

Figure 7 - Layer 2 Update Frame Format

2 The MAC DA is the broadcast MAC address. The MAC SA is the MAC address of the <u>STA</u> that has just associated or 3 reassociated. The Length field is the length of the information following this field, eight octets. The value of both the

4 DSAP and SSAP is null. The Control field and XID Information field are defined in IEEE Standard 802.2.

5 6.4 MOVE-notify Packet

6 The MOVE-notify packet is sent using the IAPP, over TCP/IP. This packet is sent from the AP directly to the old AP with 7 which the reassociating <u>STA</u> was previously associated. TCP is used, rather than UDP, because of its defined 8 retransmission behavior and the need for the exchange to be reliable.

8 retransmission behavior and the need for the exchange to be remable.

9 The data field of the MOVE-notify packet carries the MAC address and sequence number from the <u>STA</u> that has 10 reassociated with the AP sending the packet. The format of the data field for this packet is shown in Figure 8.

11						
	Address Length	Reserved	MAC Address	Sequence Number	Length of Context Block	Context Block
	Octets: 1	1	n = Address Length	2	2	m = Length of Context Block

12

Figure 8 - MOVE-notify Data Field Format

13 The Address Length is an 8-bit integer that indicates the number of octets in the MAC Address. The Reserved field is

14 reserved in this version of the protocol and should be sent with a value of zero. The Reserved field should be ignored on

15 reception. The MAC Address is the MAC address of the <u>STA</u> that has requested reassociation. The Sequence Number 16 field contains the integer value of the sequence number of the reassociation request frame received by the AP from the 17 <u>STA</u> that has requested reassociation. Allowable values for the Sequence number are between 0 and 4095. The Length of 18 Context Block is a 16-bit integer that indicates the number of octets in the Context Block field. The Context Block is a

Context Block is a 16-bit integer that indicates the number of octets in the Context Block field. The Context Block is a variable length field that contains the context information being forwarded for the reassociated STA indicated by the MAC

20 Address. The content of the Context Block should not be interpreted by the IAPP.

Deleted: station Deleted: ed Deleted: station Deleted: ed Deleted: station Deleted: station Deleted: station Deleted: station Deleted: Error! Reference source not found. Deleted: , the Deleted: of which

The Context Block is a container for information defined in other 802.11 standards that needs to be forwarded from one AP to another upon reassociation of a <u>STA</u>. The Context Block is a series of information elements. The format of the Information Element is shown in Figure 9. The element identifiers and format of the information element content are defined by the standards that use the IAPP to transfer context from one AP to another. Information elements are defined to have a common general format consisting of a 2 octet Element ID field, a 2 octet length field, and a variable-length element-specific information field. Each element is assigned a unique Element ID as defined in the standards that use the IAPP to transfer context between APs. The Length field specifies the number of octets in the Information field.

Users of the IAPP service should ignore information elements whose element identifier they do not understand, rather than
 discarding the entire IAPP MOVE-notify packet.

30

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

29

	Deleted: and
	Deleted: mobile
4	Deleted: station
_	Deleted: mobile

Deleted: mobile

Deleted: station

Deleted: station

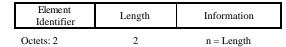


Figure 9 - Information Element Format

2 6.5 MOVE-response Packet

3 The MOVE-response packet is sent using the IAPP, over TCP and IP. This packet is sent directly to the AP from which the 4 MOVE-notify packet was received. TCP is used, rather than UDP, because of its defined retransmission behavior and the 5 need for the exchange to be reliable.

The data field of the MOVE-response packet carries the MAC address of the reassociated STA and the context information
 pertaining to that STA. The format of the data field for this packet is shown in Figure 10.

0
~

9

1

Address Length	Status	MAC Address	Sequence Number	Length of Context Block	Context Block
Octets: 1	1	n = Address Length	2	2	m = Length of Context Block

Figure 10 - MOVE-response Data Field Format

1	Deleted: station
+	Deleted: station
1	Deleted: Error! Reference source not

Deleted: station

Deleted: station

Deleted: 1 Deleted: 2

Values

Deleted:

Deleted: mobile

Deleted: station

Deleted: Table 5 - MOVE-notify Status

Formatted: Bullets and Numbering

10 The Address Length is an 8bit integer that indicates the number of octets in the MAC Address. The Status field is an 8bit integer that indicates the status resulting from the receipt of the MOVE-notify packet. The allowable values for the 11 12 MOVE response service primitive. The MAC Address is the MAC address of the <u>STA</u> that has reassociated. The Sequence Number field contains the integer value of the sequence number from the MOVE-notify packet that caused the 13 14 15 generation of this packet. The Length of Context Block is a 16-bit integer that indicates the number of octets in the Context 16 Block field. The Context Block is a variable length field that contains the context information being forwarded for the reassociated STA indicated by the MAC Address. The content of the Context Block should not be interpreted by the 17 18 IAPP.

Table 8 - MOVE-notify Status Values

19 20

Status Value	Definition	
0	Successful	
1	Move denied	
2	Stale move	
3-255	Reserved	

21 6.6 Send-Security-Block packet

The Send-Security-Block packet is sent using the IAPP, over TCP and IP. This packet is sent from the AP directly to the old AP with which the reassociating <u>STA</u> was previously associated. TCP is used, rather than UDP, because of its defined retransmission behavior and the need for the exchange to be reliable.

The data field of the Send-Security-Block packet carries the security information needed by the old AP to decrypt and encrypt ESP packets. The format of the data field for this packet is shown in Figure 11.

27

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

P802.11f/D3.1, April 2002 Inter-Access Point Protocol Length of Security Initialization Vector Security Block Formatted Table 1 Block m = Length of2 Octets: 8 Formatted: Left Security Block 2 Figure 11 - Send-Security-Block Data Field Format 3 Deleted: The Reserved field is The Initialization Vector is the first 8 bytes of the ACK nonce. The Length of Security Block is a 16-bit integer that 4 reserved in this version of the indicates the number of octets in the Security Block field. The Security Block is a variable length field that contains the protocol and should be sent with a 5 security information being forwarded from the RADIUS Server through the new AP to the old AP. The content of the value of zero. The Reserved field 6 should be ignored on reception. 7 Security Block should be interpreted by the IAPP. Deleted: The Authentication Block 8 The Security Block is a series of information elements. This block is encrypted with the old AP's RADIUS BSSID Secret, is a 16 byte field that contains the 9 using the AP's configured cipher. The old AP has to authenticate and decrypt it first before processing it. The result of an HMAC-MD5 hash of the Security Block. 10 Authentication Block is a 16 byte field that contains the result of an HMAC-MD5 hash of the Security Block. The format 11 of the Information Element is shown in Figure 9. Information elements are defined to have a common general format **Deleted: Error! Reference source** consisting of a 2 octet Element ID field, a 2 octet length field, and a variable-length element-specific information field. Each 12 not found. element is assigned a unique Element ID as defined below. _The Length field specifies the number of octets in the 13 14 Information field. 15 Table 9 - Information Elements in the Send-Security-Block Packet 16 Information Element ID Length 6 or 8 Old BSSID Date/Time stamp 1 8 New BSSID 6 or 8 New BSSID IP address 16 4 or 16 8 Security lifetime in seconds New-AP-ACK-Authenticator, 56 Deleted: 48 ESP transform identifier 1 Deleted: nonce

> Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1

4

4

16

Variable

Variable

Variable

Variable

2001 September 6 are shown in Table 10 and Table 11.

5

10

11

14

17

18

19

20

ESP authentication identifier

HMAC authentication block

SPI used to identify ESP SA from new AP

SPI used to identify ESP SA to the new AP

key used by ESP Transform for ESP packets from the new AP

key used by ESP Transform for ESP packets to the new AP

key used by ESP Authentication for ESP packets from the new AP

key used by ESP Authentication for ESP packets to the new AP

The ESP Transform and Authentication algorithms are defined by IANA at http://www.iana.org/assignments/isakmp.

registry. The recommended minimum set of transforms is ESP_DES, as defined in RFC 2407. The recommended minimum

set of authentication algorithms is HMAC_MD5 and HMAC_SHA. The values of the identifiers as of the last update of

31

Deleted: number

Deleted: number

Block Packet¶

Deleted: :

Deleted: Table 6 - Information

Elements in the Send-Security-

IFFF

Table 10 - ESP Transform Identifiers

Transform Identifier	Value	Reference
RESERVED	0	[RFC2407]
ESP_DES_IV64	1	[RFC2407]
ESP_DES	2	[RFC2407]
ESP_3DES	3	[RFC2407]
ESP_RC5	4	[RFC2407]
ESP_IDEA	5	[RFC2407]
ESP_CAST	6	[RFC2407]
ESP_BLOWFISH	7	[RFC2407]
ESP_3IDEA	8	[RFC2407]
ESP_DES_IV32	9	[RFC2407]
ESP_RC4	10	[RFC2407]
ESP_NULL	11	[RFC2407]
ESP_AES	12	[Leech]
Reserved for private use	<u>249-255</u>	[RFC2407]

3

4

1

2

Table 11 - ESP Authentication Algorithm Identifiers

Transform Identifier	Value	Reference
RESERVED	0	[RFC2407]
HMAC-MD5	1	[RFC2407]
HMAC-SHA	2	[RFC2407]
DES-MAC	3	[RFC2407]
KPDK	4	[RFC2407]
HMAC-SHA2-256	5	[Leech]
HMAC-SHA2-384	6	[Leech]
HMAC-SHA2-512	7	[Leech]
HMAC-RIPEMD	8	[RFC2857]
RESERVED	<u>9-61439</u>	
Reserved for private use	61440-65535	

6.7 ACK-Security-Block packet 5

6 ACK-Security-Block packet is sent using the IAPP, over TCP and IP. This packet is sent from the old AP with which the

reassociating <u>STA</u> was previously associated directly to the new AP. TCP is used, rather than UDP, because of its 7 8 defined retransmission behavior and the need for the exchange to be reliable. The format of the data field for this packet is

9 shown in Figure 12.

10	Initialization Vector New-AP-ACK	[]]	$\left \right $	sent with a value o should be ignored
	Authenticator	///		Deleted: The AC
	Octets: 8	I / ['/	byte field that con that the new AP re
11	Figure 12 - ACK-Security-Block Data Field Format			
12	The Initialization Vector is an 8-byte value copied from the Date/Time stamp. The New-AP-ACK-Authenticator field][-		authentication.
13	carries the content of the New-AP-ACK-Authenticator Information element that the old AP received in the Security Block.	1	\nearrow	Deleted: ACK at
14	The content of the <u>New-AP-ACK-Authenticator</u> should be interpreted by the <u>new AP</u> . The <u>New-AP-ACK-Authenticator</u>	Ľ	{	Deleted: IAPP

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

32

Deleted: Table 7 - ESP Transform Identifiers¶ The values 249-255 are reserved for private

use amongst cooperating systems.¶

Deleted: Table 8 - ESP Authentication Algorithm Identifiers¶ Values 5-61439 are reserved to IANA.

Values 61440-65535 are for private use.¶

Formatted: Bullets and Numbering

Deleted: mobile

Deleted: station

Deleted: ¶

The data field of the ACK -Security-Block packet carries the New AP ack authentication Information element that the old AP received in the Security Block.

Deleted: a

Deleted: ion

Deleted: 32

Deleted: Send

Deleted: The Reserved field is reserved in this version of the protocol and should be of zero. The Reserved field on reception.

CK authentication is a 32 ntains an encrypted nonce eceived from the RADIUS entication Block is a 16 ntains the result of an of the ACK

uthentication

	ew AP's RADIUS BSSID Secret, using the AP's configured cipher. The new AP has to authen fore processing it. This New-AP-ACK-Authenticator protects the new AP from spoofed A		Del	eted: ACK authentication
Security-Block packets 6.8 Information		ACK-	The 256 RAI Acc	eted: ¶ re is only one element. This is the bit nonce the new AP sent to the DIUS Server in the RADIUS ess-Request message. eted: nonce
	Table 12 - IAPP Information Elements			matted: Bullets and Numberi matted: Keep withnext
IAPP Element ID	Description	 ++ 「	[Eor	matted Table
1	Date/Time stamp			
2	Security lifetime	-l i		
3	ACK nonce (32-byte)	- i		
4	ESP transform number			
5	ESP authentication number	_] i		
<u>6</u>	SPI from new AP] İ		
7	ESP transform key from new AP	!		
8	ESP authentication key from new AP	_ !		
<u>9</u>	SPI to new AP			
10	ESP transform key to new AP	_		
	ESP authentication key to new AP	_ !		
$\frac{12}{12}$	Old BSSID			
13	New-AP-ACK-Authenticator (48-byte)	-		
<u> </u>	HMAC authentication block New BSSID	-		
<u>15</u> 16	New BSSID IP address			
17 - 65.534	Reserved for future standardization			
65,535	Proprietary Information. This information element must include the 3-byte Organizational	¦		
	Unique Identifier (OUI) from the organization's MAC address allocation as the first three bytes of the information field.			
6.8.1 Date/Time st		•	For	matted: Heading3
The Date/Time stamp in	nformation element contains date and time information in RFC 1305 format. This information ele	ement	For	matted: Normal
is 8 octets in length.			For	matted: Heading3
6.8.2 Security life	time			
The Security lifetime in	formation element contains a value indicating the seconds for the life of the SA. This value is	usad	For	matted: Normal
	me at which the SA is no longer valid for sending IAPP packets, and may be deleted. Con			
	As available for some limited time to receive packets from other APs.	mon		
			For	matted: Heading3
6.8.3 ACK nonce (<u>32-byte)</u>		<u> </u>	
The ACK nonce inform	nation element is a 32 byte random value created by the RADIUS server, used by the new A	D to	For	matted: Normal
	old AP. This information element is 4 octets in length.	<u>11 10</u>		
estudiish hvonoss of the	starta e rais information element is e octos in fongui.		Eor	matted: Heading3
6.8.4 ESP transfor	r <u>m number</u>	•		matted. neadings
			For	matted: Normal
The ES P transform nun This information element	aber information element is an 8-bit value that identifies the cryptographic algorithm used with at is 1 octet in length.	ESP.		
	Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.	33		

1	Inter-Access Point Protocol F	IEEE 2802.11f/D3.1, April 2002	
1	6.8.5 ESP authentication number		Formatted: Heading3
2 3	The ESP authentication number information element is an 8-bit value that identifies the auth ESP. This information element is 1 octet in length.	nentication algorithm used with	Formatted: Normal
4	6.8.6 SPI from new AP	-	Formatted: Heading3
5 6 7	The SPI from new AP information element is an Index into the SA for IAPP MOVE packets old AP. Initially this is a Request, but if this information is cached, it could later be a Respo	s going from the new AP to the onse. This information element	Formatted: Normal
8	6.8.7 ESP transform key from new AP	-	Formatted: Heading3
9 10	The ESP transform key from new AP information element is a variable length value that algorithmidentified by the ESP transform number to encrypt information from the new AP to		Formatted: Normal
11	6.8.8 ESP authentication key from new AP	-	Formatted: Heading3
10	The ESD suther traction have from many AD information element is a variable largely value the	stin wood by the outboutiontion	Formatted: Normal
12 13	The ESP authentication key from new AP information element is a variable length value tha algorithm identified by the ESP authentication number to authenticate information from the r		
14	6.8.9 SPI to new AP	-	Formatted: Heading3
15	The ODI to many AD information allowed in an Index into the CA for LADD MONT analysis	AD from the old	Formatted: Normal
15 16 17	The SPI to new AP information element is an Index into the SA for IAPP MOVE packets gr AP. Initially this is a Response, but if this information is cached, it could later be a Reques octets in length.		
18	6.8.10 ESP transform key to new AP	-	Formatted: Heading3
19 20	The ESP transform key from new AP information element is a variable length value that algorithm identified by the ESP transform number to encrypt information to the new AP from		Formatted: Normal
21	6.8.11 ESP authentication key to new AP		Formatted: Heading3
22	The ESP authentication key from new AP information element is a variable length value that algorithm identified by the ESP authentication number to authenticate information to the new		Formatted: Normal
23 24	6.8.12 Old BSSID	V AP Irom the old AP.	Formatted: Heading3
25 26	The Old BSSID information element contains the value of the BSSID for the old AP. This length, either 6 or 8 octets.	information element is variable	Formatted: Normal
27	6.8.13 New-AP-ACK-Authenticator (48-byte)	-	Formatted: Heading3
28	The New-AP-ACK-Authenticator information element contains a date/time stamp, an	ACK nonce and an HMAC	Formatted: Normal
29	authentication block.		
30	Table 13 - Content of the New-AP-ACK-Authenticator	<u></u>	
į	Length Information 8 Date/Time stamp		
ĺ	32 ACK nonce		
į	16 HMAC authentication block		
31		-	Formatted: Normal

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

	Inter-Access Point Protocol	IEEE P802.11f/D3.1, April 2002	
1	6.8.14 HMAC authentication block		Formatted: Heading3
2 3 4	The HMAC authentication block information element is a value created by performing other designated fields. The usage of this information element is described in the definit are authenticated. This information element is 16 octets in length.	*	Formatted: Normal
5	6.8.15 New BSSID	•	Formatted. Headings
6 7	The New BSSID information element contains the value of the BSSID for the new AP. Th length, either 6 or 8 octets.	is information element is variable	
8	6.8.16 New BSSID IP address		Formatted: Heading3
9 10	The New BSSID IP address information element contains the IP address of the new A variable length, either 4 or 8 octets.	<u>P. This information element is</u>	Formatted: Normal
11			

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1

2

3

4 5

6 7

8

9 10

11

12

13

14 15

16

17 18

19

20 21

22 23

24

25 26 27

28

29

30

31

32 33

34

37

38

39

40

41

43

44

45

46 47

48

49 50

52

53

54 55

Annex A, Management Information Base

```
(Normative)
   -- * IEEE 802.11f Inter-AP Protocol Management Information Base
   IEEE802dot11f-MIB DEFINITIONS ::= BEGIN
      TMPORTS
         MODULE-IDENTITY, OBJECT-TYPE,
         NOTIFICATION-TYPE, Integer32, Counter32 FROM SNMPv2-SMI
         DisplayString , MacAddress, RowStatus,
         TruthValue
                                         FROM SNMPv2-TC
         MODULE-COMPLIANCE, OBJECT-GROUP,
         NOTIFICATION-GROUP
                                         FROM SNMPV2-CONF
                                         FROM RFC1213-MIB;
         ifIndex
   -- * MODULE IDENTITY
   ieee802dot11f MODULE-IDENTITY
      LAST-UPDATED "0107020000Z"
      ORGANIZATION "IEEE 802.11"
      CONTACT-INFO
            "WG E-mail: stds-802-11@ieee.org
               Chair: Stuart J. Kerry
               Postal: Philips Semiconductors, Inc.
35
36
                     1109 McKay Drive
                     M/S 48A SJ
                     San Jose, CA 95130-1706 USA
                 Tel: +1 408 474 7356
                 Fax: +1 408 474 7247
               E-mail: stuart.kerry@philips.com
                                                                        Formatted: French (France)
42
               Editor: Bob O'Hara
               Postal: Informed Technology, Inc.
                     1750 Nantucket Circle, Suite 138
                                                                        Formatted: French (France)
                     Santa Clara, CA 95054 USA
                 Tel: +1 408 986 9596
                 Fax: +1 408 727 2654
               E-mail: bob@informed-technology.com"
      DESCRIPTION
51
         "The MIB module for IEEE 802.11f IAPP entities.
         iso(1).member-body(2).us(840).ieee802dot11(10036).iapp(6)"
      ::= \{ 1 2 840 10036 6 \}
   Copyright © 2002 IEEE. All rights reserved.
```

This is an unapproved IEEE Standards Draft, subject to change.

1

2 3

4

5

6 7

9

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26 27

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57

```
-- * Major sections
    -- IAPP diagnostic attributes
        -- DEFINED AS "The iappdiagnostics object class provides the necessary
        -- support at an 802.11 AP to manage and diagnose the IAPP processes
        -- and protocol in the AP such that the AP may work cooperatively as
        -- a part of an IEEE 802.11 network.";
8
    iappdiagnostics OBJECT IDENTIFIER ::= {ieee802dot11f 1}
10
11
    iappAPTable OBJECT-TYPE
                   SEQUENCE OF JappAPTableEntry
          SYNTAX
                                                                                          Deleted: iappAPTableEntry
          MAX-ACCESS not-accessible
          STATUS
                  current
          DESCRIPTION
               "The (conceptual) table listing the other APs with
                which the AP has communicated via IAPP."
          ::= { iappdiagnostics 1 }
   LappAPTableEntry OBJECT-TYPE
                                                                                          Deleted: iappAPTableEntry
          SYNTAX
                    iappDiagnosticTableEntry
          MAX-ACCESS not-accessible
          STATUS
                    current
          DESCRIPTION
                "An entry (conceptual row) representing another AP
                with which the AP has communicated via IAPP."
          TNDEX
                   { iappDiagnosticTableIndex }
28
          ::= { iappDiagnosticTable 1 }
30
    iappAPTableEntry ::= SEQUENCE {
          iappAPTableIndex
                                                         Integer32,
          iappAPIPAddress
                                                         IpAddress,
          iappAPMACAddress
                                                         MacAddress,
          iappClientServerPortNumber
                                                         Integer32,
          iappAPRoundTripTime
                                                         TimeTicks,
          iappAPRTO
                                                         TimeTicks,
          iappMoveNotifySent
                                                         Counter32,
          iappMoveNotifvRetransmissions
                                                         Counter32.
          iappMoveNotifyReceived
                                                         Counter32,
          iappMoveResponseSent
                                                         Counter32,
          iappMoveResponseReceived
                                                         Counter32.
          iappMoveNotifyMalformed
                                                         Counter32,
          iappMoveNotifyUnAuthentic
                                                         Counter32,
          iappMoveResponseMalformed
                                                         Counter32,
          iappMoveResponseUnAuthentic
                                                         Counter32,
          iappMoveNotifyBadService
                                                         Counter32.
          iappMoveResponseBadService
                                                         Counter32,
          iappMoveNotifyPendingRequests
                                                        Gauge32,
          iappMoveResponsePendingResponses
                                                         Gauge32,
          iappMoveNotifyTimeouts
                                                         Counter32,
                                                         Counter32,
          iappUnknownType
          iappMoveNotifyPacketsDropped
                                                         Counter32,
          iappMoveResponsePacketsDropped
                                                         Counter32
    }
    iappAPTableIndex OBJECT-TYPE
                    Integer32 (1..2147483647)
          SYNTAX
```

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

37

IFFF

P802.11f/D3.1, April 2002

```
1
          MAX-ACCESS not-accessible
          STATUS
2
                     current
3
          DESCRIPTION
                  "A number uniquely identifying each other AP
4
5
                  with which this AP has communicated via IAPP."
6
          ::= { iappAPTableEntry 1 }
7
8
    iappAPIPAddress OBJECT-TYPE
9
          SYNTAX
                     IpAddress
10
          MAX-ACCESS read-only
11
          STATUS
                     current
12
          DESCRIPTION
13
                 "The IP address of the AP
14
                 referred to in this table entry."
15
          ::= { iappAPTableEntry 2 }
16
17
    iappAPMACAddress OBJECT-TYPE
18
          SYNTAX
                    MacAddress
19
          MAX-ACCESS read-only
20
          STATUS
                     current
21
          DESCRIPTION
22
                "The MAC address of the AP
23
                  referred to in this table entry."
24
          ::= { iappAPTableEntry 3 }
25
26
27
    iappClientServerPortNumber OBJECT-TYPE
28
          SYNTAX Integer32 (0..65535)
29
          MAX-ACCESS read-only
30
          STATUS current
31
          DESCRIPTION
32
                "The UDP port the AP is using to send
33
                 to the other AP"
34
          ::= { iappAPTableEntry 4 }
35
36
    iappAPRoundTripTime OBJECT-TYPE
37
          SYNTAX TimeTicks
          MAX-ACCESS read-only
38
39
          STATUS current
40
          DESCRIPTION
41
                 "The time interval (in hundredths of a second) between
42
                  the most recent Move-Notify sent by this AP and the
43
                  Move-Response that matched it from the other AP."
44
          ::= { iappAPTableEntry 5 }
45
46
    iappAPRTO OBJECT-TYPE
47
          SYNTAX TimeTicks
48
          MAX-ACCESS read-only
49
          STATUS current
50
          DESCRIPTION
51
                 "The Round Trip Timeout (RTO) (in hundredths of a second)
52
                 between this AP and the other AP."
53
          ::= { iappAPTableEntry 6 }
54
55
     -- Request/Response statistics
56
```

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1

2

3 4

5

6

7 8

9 10

11

12

13

14

15 16 17

18

19

20

21

22 23

24

25

26 27

28

29

30

31

32

33

34 35

36

37

38

39

40

41

42 43

44

45

46

47

48

49

50

51 52

53

54

55

56

57

```
_ _
    TotalIncomingPackets = MoveNotifyReceived +
                                                         MoveResponseReceived
                                                                                   +
UnknownTypes
-- TotalIncomingPackets - Malformed - Unauthentic -
-- UnknownTypes - PacketsDropped = Successfully received
_ _
iappMoveNotifySent OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The number of Move-Notify packets sent to this AP.
             This does not include retransmissions."
      ::= { iappAPTableEntry 7 }
iappMoveNotifyRetransmissions OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Notify packets
             retransmitted to this AP."
      ::= { iappAPTableEntry 8 }
iappMoveNotifyReceived OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The number of Move-Notify packets
             (valid or invalid) received from this AP."
      ::= { iappAPTableEntry 9 }
iappMoveResponseSent OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Response packets sent to this AP."
      ::= { iappAPTableEntry 10 }
iappMoveResponseReceived OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The number of Move-Response packets
              (valid or invalid) received from this AP."
      ::= { iappAPTableEntry 11 }
iappMoveNotifyMalformed OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The number of malformed Move-Notify
                         Copyright © 2002 IEEE. All rights reserved.
```

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26 27

28

29 30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

```
packets received from this AP.
             Malformed packets include packets with
             an invalid length. Unauthenticated packets
             or unknown types are not
              included as malformed packets."
      ::= { iappAPTableEntry 12 }
iappMoveNotifyUnAuthentic OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Notify packets
             failing authentication, received from this AP."
      ::= { iappAPTableEntry 13 }
iappMoveResponseMalformed OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of malformed Move-Response
             packets received from this AP.
             Malformed packets include packets with
             an invalid length. Unauthenticated packets
             or unknown types are not
             included as malformed packets."
      ::= { iappAPTableEntry 14 }
iappMoveResponseUnAuthentic OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Response packets
             failing authentication, received from this AP."
      ::= { iappAPTableEntry 15 }
iappMoveNotifyBadService OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Notify packets
             received from this AP which could not be acted
             upon, due to inclusion of an unavailable service.
             Malformed or unauthentic packets are not included
             in this count."
      ::= { iappAPTableEntry 16 }
iappMoveResponseBadService OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Response packets
             received from this AP which could not be acted
                         Copyright © 2002 IEEE. All rights reserved.
                  This is an unapproved IEEE Standards Draft, subject to change.
```

1

2

3

4

5 6

7

8

9 10

11

12

13

14

15

16

17 18

19

20 21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37 38 39

40

41

42

43

44

45

46 47

48

49

50 51

52

53

54

55

56

57

```
upon, due to requesting an unavailable service.
             Malformed or unauthentic packets are not included
             in this count."
      ::= { iappAPTableEntry 17 }
iappMoveNotifyPendingRequests OBJECT-TYPE
      SYNTAX Gauge32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The number of Move-Notify packets
             destined for this AP that have not yet timed out
             or received a response. This variable is incremented
             when a Move-Notify is sent and decremented due to
             receipt of a Move-Response, a timeout or retransmission."
      ::= { iappAPTableEntry 18 }
iappMoveNotifyTimeouts OBJECT-TYPE
     SYNTAX Counter32
     MAX-ACCESS read-only
     STATUS current
     DESCRIPTION
            "The number of Move-Notify timeouts to this AP.
             After a timeout the AP may retry or
             give up. A retry is counted as a
             retransmit as well as a timeout."
      ::= { iappAPTableEntry 19 }
iappUnknownType OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of IAPP packets of unknown type which
             were received from this AP."
      ::= { iappAPTableEntry 20 }
iappMoveNotifyPacketsDropped OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Notify packets received from
             this AP and dropped for some other reason.
             Malformed or unauthentic packets, or those
             requesting an unavailable service are not included
             in this count."
      ::= { iappAPTableEntry 21 }
iappMoveResponsePacketsDropped OBJECT-TYPE
      SYNTAX Counter32
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
            "The number of Move-Response packets received from
             this AP and dropped for some other reason, such
                         Copyright © 2002 IEEE. All rights reserved.
                  This is an unapproved IEEE Standards Draft, subject to change.
```

```
1
           as arriving after the Timeout window has expired.
2
3
4
5
          Malformed or unauthentic packets, or those
          requesting an unavailable service are not included
          in this count."
      ::= { iappAPTableEntry 22 }
6
7
8
  9
  -- * End of IAPP MIB
  10
11
  END
```

12

Copyright © 2002 IEEE. All rights reserved. This is an unapproved IEEE Standards Draft, subject to change.

2

Deleted: Annex B, Context Transfer (Informative) The text in this annex has been excerpted from IETF RFC 3162.¶ B.1 Introduction¶ IEEE 802.1X [13] enables authenticated access to IEEE 802 media, including Ethernet, Token Ring, and 802.11 wireless LANs. Although Authentication, Authorization and Accounting (AAA) support is optional within IEEE 802.1X, it is expected that many IEEE 802.1X Authenticators will function as AAA clients. Behavior of IEEE 802.1X Authenticators acting as RADIUS clients is described in [24]. ¶ The IEEE 802 Inter-Access Point Protocol (IAPP), under development within the IEEE 802.11 TGf working group, supports the transfer of context between access points implementing IEEE 802 technology. This annex describes how IAPP can be used to support transfer of authentication, authorization and accounting (AAA) context between devices supporting IEEE 802.1X network port authentication [13].¶ In terms of organization, this document first develops a general model for AAA context transfer. Central to the model is the notion of a "correct" context transfer -- a transfer resulting in the same context on the new access point as would have resulted had a AAA conversation been completed.¶ The circumstances in which "correct" context transfer can be achieved are analyzed -demonstrating that this can only be achieved in a limited set of circumstances. As a result, it is suggested that context transfer protocols restrict the domain of applicability to scenarios involving a high degree of homogeneity.¶ For example, layer 2 context transfer solutions are most likely to be successful transferring context within media families, such as IEI [10] Formatted: annex

 $Copyright @ 2002 \,I\!E\!E\!. \,All \,rights reserved. \\ This is an unapproved \,I\!E\!E\!E \,Standards \,Draft, subject to change.$

Page 17: [1] Deleted	Bob O'Hara	4/13/2002 5:31 PM
802.11		
Page 17: [1] Deleted	Bob O'Hara	4/13/2002 5:27 PM
station		
Page 17: [1] Deleted	Bob O'Hara	4/13/2002 5:27 PM
mobile station		
moone station		
Page 17: [1] Deleted	Bob O'Hara	3/14/2002 10:40 AM
IADD also removes the need for	or regulation with 802.1V	when moving between access
IAPP also removes the need for points, enabling seamless connection		-
server.	teating, and reasoning the road	
Page 17: [2] Deleted	Bob O'Hara	3/14/2002 11:04 AM
associate request to an Access F	Point	
1		
Page 17: [2] Deleted	Bob O'Hara	3/14/2002 11:05 AM
a reassociate request		
I. I. I. I. I. I. I. I. I. I. I. I. I. I		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 11:05 AM
an AP		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 11:05 AM
associate		
associate		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:55 AM
-		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:56 AM
Р		
Page 17: [3] Deleted	Bob O'Hara	4/13/2002 4:29 PM
-	200 0 11010	1, 10, 2002 4.2 / 1 W
Ievel		

Level

Page 17: [3] Deleted	Bob O'Hara	4/23/2002 2:26 PM
subnet broadcast		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:58 AM
-		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:58 AM
message		
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:58 AM
Page 17: [3] Deleted	Bob O'Hara	3/14/2002 10:58 AM
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:08 AM
an AP		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:08 AM
associate		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:08 AM
	bob o hara	37 147 2002 11.00 AM
n		
David 7 [4] Dalata d		2/44/2020 44 00 AM
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:08 AM
ove		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 1:50 PM
old-		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:09 AM
ove		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 1:52 PM

-

R

Page 17: [4] Deleted	Bob O'Hara	3/14/2002 1:50 PM
old-		
old-		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 11:09 AM
5		
ove		
Page 17: [4] Deleted	Bob O'Hara	3/14/2002 1:50 PM
old-STA, allowing	the new-STA to replicate the	prior connection context without
-	is commonly called a fast-handoff.	1
-	-	
Page 17: [5] Deleted	Bob O'Hara	3/14/2002 11:10 AM
Move		
wiove		
Page 17: [5] Deleted	Bob O'Hara	3/14/2002 11:10 AM
ruge IV. [0] Deleteu		5/14/2002 11:10 MM
Move		
Page 17: [6] Deleted	Bob O'Hara	3/14/2002 11:10 AM
Move		
Page 17: [6] Deleted	Bob O'Hara	3/14/2002 1:52 PM
D		
R		
Dama 47 [/] Dalatad	Bab Olliana	4/12/2022 4 2/ 54
Page 17: [6] Deleted	Bob O'Hara	4/13/2002 4:36 PM
S		
Page 17: [7] Deleted	Bob O'Hara	4/13/2002 4:36 PM
0		
S		
Page 17: [7] Deleted	Bob O'Hara	4/13/2002 4:36 PM
b		

 Page 17: [7] Deleted
 Bob O'Hara
 4/13/2002 4:32 PM

Page 17: [7] Deleted	Bob O	'Hara	4/13/2002 4:28 PM
associate request			
Page 17: [8] Deleted	Bob O	'Hara	4/13/2002 5:31 PM
802.11			
Page 17: [8] Deleted	Bob O	'Hara	4/13/2002 5:27 PM
mobile station			
Page 17: [8] Deleted	Bob O	'Hara	4/13/2002 5:29 PM
mobile STA			
Page 17: [8] Deleted	Bob O	'Hara	4/23/2002 3:47 PM
S			
Page 22: [9] Deleted	Bob O	'Hara	4/23/2002 4:30 PM
			1
	Length of Security Block	Security Block	
		m = Length of	-
	2	Security Block	

Figure 4 - Send-Security-Block Data Field Format

The Reserved field is reserved in this version of the protocol and should be sent with a value of zero. The Reserved field should be ignored on reception. The Length of Security Block is a 16-bit integer that indicates the number of octets in the Security Block field. The Security Block is a variable length field that contains the security information from the RADIUS Server for the new AP. The content of the Security Block should be interpreted by the IAPP. The Security Block is a series of information elements. This block is encrypted with the new AP's RADIUS BSSID Secret, using the AP's configured cipher. The old AP has to decrypt it first before processing it. The format of the Information Element is shown in **Error! Reference source not found.** Information elements are defined to have a common general format consisting of a 2 octet Element ID field, a 2 octet length field, and a variable-length element-specific information field. Each element is assigned a unique Element ID as defined below. The Length field specifies the number of octets in the Information field.

ID	Length		Information		
	8		Date/Time stamp		
	8		Security lifetime in seconds		
ID	Len	gth	Information		
	8		Date/Time stamp		
	8		Security lifetime in seconds		
	32		ACK nonce		
1			ESP transform number		
1			ESP authentication number		
4			SPI used to identify ESP SA to the old AP		
	Vari	able	key used by ESP Transform for ESP packets to the old AP		
Variable		able	key used by ESP Authentication for ESP packets to the old AP		
4			SPI used to identify ESP SA from the old AP		
Variable		able	key used by ESP Transform for ESP packets from the old AP		
Variable		able	key used by ESP Authentication for ESP packets from the old AP		
Toble '	2 Informa	tion F	lements in the Send-Security-Block Packet		

 Table 3 - Information Elements in the Send-Security-Block Packet

 Page 43: [10] Deleted
 Bob O'Hara
 4/22/2002 4:57 PM

Annex B, Context Transfer

(Informative)

The text in this annex has been excerpted from IETF RFC 3162.

B.1 Introduction

IEEE 802.1X [13] enables authenticated access to IEEE 802 media, including Ethernet, Token Ring, and 802.11 wireless LANs. Although Authentication, Authorization and Accounting (AAA) support is optional within IEEE 802.1X, it is expected that many IEEE 802.1X Authenticators will function as AAA clients. Behavior of IEEE 802.1X Authenticators acting as RADIUS clients is described in [24].

The IEEE 802 Inter-Access Point Protocol (IAPP), under development within the IEEE 802.11 TGf working group, supports the transfer of context between access points implementing IEEE 802 technology. This annex describes how IAPP can be used to support transfer of authentication, authorization and accounting (AAA) context between devices supporting IEEE 802.1X network port authentication [13].

In terms of organization, this document first develops a general model for AAA context transfer. Central to the model is the notion of a "correct" context transfer -- a transfer resulting in the same context on the new access point as would have resulted had a AAA conversation been completed.

The circumstances in which "correct" context transfer can be achieved are analyzed -demonstrating that this can only be achieved in a limited set of circumstances. As a result, it is suggested that context transfer protocols restrict the domain of applicability to scenarios involving a high degree of homogeneity.

For example, layer 2 context transfer solutions are most likely to be successful transferring context within media families, such as IEEE 802. While the IAPP is expected to be used primarily for transfer of context between IEEE 802.11 access points, it is also possible for it to be used to transfer context between access points supporting other IEEE 802 media, such as IEEE 802.15 or 802.16. Where context transfer between dissimilar media is required, then

higher layer homogeneity is needed. This can be achieved, for example, by restricting applicability to access points supporting Mobile IP.

B.2 Terminology

This document uses the following terms:

Authenticator

An Authenticator is an entity that requires authentication from the Supplicant. The Authenticator may be connected to the Supplicant at the other end of a point-to-point LAN segment or 802.11 wireless link.

Authentication Server

An Authentication Server is an entity that provides an Authentication Service to an Authenticator. This service verifies from the credentials provided by the Supplicant, the claim of identity made by the Supplicant.

Port Access Entity (PAE)

The protocol entity associated with a physical or virtual (802.11) Port. A given PAE may support the protocol functionality associated with the Authenticator, Supplicant or both. Supplicant

A Supplicant is an entity that is being authenticated by an Authenticator. The Supplicant may be connected to the Authenticator at one end of a point-to-point LAN segment or 802.11 wireless link.

B.3 Context transfer model

In attempting to transfer context between devices, the first task is to understand how "context" is defined, and what the goal of the context transfer is. For the purpose of this document "context" will refer to the set of state variables defining the service to be provided to the user.

To date, a number of protocols have been proposed for defining and managing services provided on a per-user basis. RADIUS, defined in [4]-[6], is a first-generation protocol for Authentication, Authorization and Accounting (AAA). Diameter [25] is a next generation AAA protocol currently under development. COPS [26] is a protocol used to manage the use of policies for QoS, Security, and other policy-based services.

In each of these protocols, exchanges are used to establish, and possibly to remove, state from devices. In thinking about transfer of context initially established through such protocols, we would like to propose the "Equivalency Principle":

For context established via protocol exchanges, transfer of context to a new device can be accomplished by transferring the protocol exchanges that created the context on the original device, and processing them on the new device. For such a context transfer to be successful, the state created on the new device by processing such an exchange MUST be equivalent to the state that would have been created by having the new device engage in a fresh protocol conversation.

For the equivalency principle to be satisfied, it is necessary for the new device to be able to process the protocol exchanges from the old device, and for those exchanges to result in the same state on the new device. This requires that the protocol messages completely describe the context to be created on the device, and that the effect of processing these messages not depend on state that exists uniquely on the old device, but may not exist on the new device. For example, a protocol message that describes the state to be attained in terms of deltas from a previous state would not be suitable for use in context transfer, since the effect of the protocol message would differ depending on the previous device state. Similarly, if a protocol message

were conditionally executed based on dynamic data, such as the number of users on the device, then the message might have a different effect on the new device than on the old device. To a large extent, AAA protocols meet the criteria, since the desired device state is completely described by the authorizations. Conditional execution, if it occurs, is relatively rare and usually confined to the AAA server.

The set of messages that establish service context differ, depending on the AAA protocol that is being considered. Within RADIUS [4]-[6], service context is only established via an Access-Accept. Access-Reject messages do not establish context since their purpose is to deny access. Similarly, Access-Challenge messages do not establish context since they represent an intermediate stage within the authentication conversation. Since only one RADIUS message (Access-Accept) establishes service context, to re-establish context on a new device, to first order it is only necessary to transfer Access-Accept messages to the new device, and process them as if they were sent by the RADIUS server.

Note that since only one RADIUS message type can establish context, the message type need not be included explicitly, since it is implicit. As a result, devices supporting transfer of RADIUS context need only transfer attributes, not the entire RADIUS message.

B.3.1 "Correct" context transfer

Given this model for context establishment, it is worthwhile to examine when the transfer of context between devices produces a "correct" result.

One way to define correctness in a context transfer is that the transfer establishes on the new device the same context as would have been created had the new device completed a AAA conversation with the authentication server. Ideally, a context transfer should only succeed if it is "correct" in this way. If a successful context transfer would establish "incorrect" state, it would be preferable for such a transfer to fail.

Not all AAA and access device configurations are capable of meeting this definition of "correctness". Implicit within our context transfer model is trust between devices transferring context. Since the new device acts on the context transfer as though it had been instructed by a trusted AAA server, it is necessary for the new device to trust the old device.

In transfer of context across administrative domains, such a level of trust may not be possible or appropriate. As a result, a context transfer may fail even in situations where the devices are homogeneous, due to lack of trust between administrative domains.

If the deployment is heterogeneous, it also may be difficult to meet this definition of correctness. In these situations, AAA servers often perform conditional evaluation, in which the

authorizations returned in an Access-Accept message are contingent on characteristics of the AAA client or the user. For example, in a heterogeneous deployment, the AAA server might return different authorizations depending on the type of device making the request, in order to make sure that the requested service is consistent with device capabilities.

If differences between the new and old device would result in the AAA server sending a different set of messages to the new device than were sent to the old device, then a context transfer between the devices cannot be carried out correctly.

For example, if some access points within a deployment support dynamic VLANs while others do not, then attributes present in the Access-Request (such as the NAS-IP-Address, NAS-Identifier, Vendor-Identifier, etc.) could be examined to determine when VLAN attributes will be returned, as described in [24].

In practice, this limits the situations in which context transfer can be expected to be successful. Where the deployed devices implement the same set of services, it may be possible to transfer context successfully. However, where the supported services differ between devices, or where some devices require vendor specific attributes, the context transfer may not succeed. For example, RFC 2865, section 1.1 states:

"A NAS that does not implement a given service MUST NOT implement the RADIUS attributes for that service. For example, a NAS that is unable to offer ARAP service MUST NOT implement the RADIUS attributes for ARAP. A NAS MUST treat a RADIUS access-accept authorizing an unavailable service as an access-reject instead."

Obeying the Equivalency Principle, if a new device is provided with RADIUS context for an unavailable service, then it MUST process this context the same way it would handle a RADIUS Access-Accept requesting an unavailable service. This MUST cause the context transfer to fail.

Although it may seem some what counter-intuitive, failure is indeed the "correct" result. Presumably a correctly configured AAA server would not request that a device carry out a service that it does not implement. This implies that if the new device were to complete a AAA conversation that it would be likely to receive different service instructions than those present in the context transfer. In such a case, failure of the context transfer is the desired result. This will cause the new device to go back to the AAA server in order to receive the appropriate service definition.

Thus in practice, context transfer is most likely to be successful within a homogeneous device deployment within a single administrative domain. For example, where all the devices support IEEE 802.1X, success is possible, as long as the same set of security services are supported. For example, it would not be advisable to attempt to transfer context between an 802.11 access point implementing WEP to an 802.15 access point without security support. The correct result of such a transfer would be a failure, since if the transfer were blindly carried out, then the user would find themselves moved from a secure to an insecure channel without permission from the AAA server. Thus the definition of an "unsupported service" MUST encompass requests for unavailable security services.

In general, context transfers between media with different service models should not be expected to be successful. For example, attempts to transfer context between cellular devices and 802.11 access points cannot be "correct" within this model, unless the cellular access points implement the same set of services as the 802.11 access points. Where the implemented services differ, the correct behavior would be for such context transfers to fail, and for the 802.11 AP to pick up the correct service definition by going back to the AAA server. Thus while attempted context transfers between heterogeneous technologies may fail, context transfers between homogeneous devices have a higher probability of success. B.3.2 Context handling

AAA is not mandatory to implement for IEEE 802.1X Authenticators. The IEEE 802.1X specification provides guidelines for usage of RADIUS [13], a revised version of which can be found in [24]. However, support for other protocols is feasible. Since a IEEE 802.1X Authenticator may support zero or more AAA protocols and implementation of AAA is non-mandatory, an IEEE 802.1X Authenticator cannot be assumed to implement any particular AAA protocol.

Therefore it is important that the context transfer protocol be agnostic with respect to AAA protocols. If two devices share support for a given AAA protocol, then the context transfer mechanism should enable the devices to interoperate. One way to accomplish this is to enable the context transfer mechanism to support multiple AAA protocols within the same message. This allows a device that speaks multiple protocols to interoperate with a device that only supports one of them.

Through addition of a AAA Information Element, and unique sub-elements for each AAA protocol, it is possible to support transfer of context for multiple AAA protocols within the same message. Assigning only one Information Element for AAA ensures against exhaustion of the IAPP element space. Since the number of AAA attributes may be substantial, assignment of Information Elements to individual attributes is to be avoided.

The packaging of AAA protocol messages within individual sub-elements enables compatibility with the definition of correctness described earlier. Within IAPP, a device that receives Information Elements or sub-elements that it does not support will ignore those elements, and process those that it does support.

However, as described earlier, our model of context transfer requires that if a device supports a AAA protocol, that transferred AAA messages MUST be processed according to the rules of the protocol. For RADIUS, this implies that the context transfer MUST fail if unavailable services are requested. As a result, individual RADIUS attributes MUST NOT be encoded as Information Elements or sub-elements within IAPP. Rather, RADIUS attribues are encoded as a unit within the RADIUS sub-element. This enables the correct processing to occur. While a device may ignore an entire Information Element or sub-element, once the Information Element or sub-element is recognized it must be processed in its entirety.

Among other things, this approach enables the context transfer operation to be independent of the supported AAA protocol. For example, a device supporting both Diameter and RADIUS could include sub-elements for both protocols. This would enable transfer of context to a new device supporting either protocol.

B.3.3 Information Element format

Within IAPP, Information Elements have the following structure:

0 1 2 3 4 5 6 7 8 9 0 1 2

The Element Identifier field is two octets. It identifies the enclosed Information Element. Length

The Length field is two octets. It encodes the length of the Information Element, including the Element Identifier, Length and Information fields.

Information

The Information field is variable length. It encodes the Information Element.

AAA sub-elements are encoded within the Information field as follows:

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Organization Unique Identifier | Type |

Data...

Organization Unique Identifier (OUI)

The OUI is a three octet field, encoding the Organization Unique Identifier. An OUI of zero is used for standardized sub-elements. Non-zero OUIs can be used to support vendor-specific sub-elements.

Type

The type field is one octet, and represents the AAA protocol type:

RADIUS = (1)

Data

The Data field is of variable length, and contains the context to be transferred. For RADIUS this consists of a list of attributes.

B.3.4 Usage guidelines for the RADIUS sub-element

RADIUS context is established solely by Access-Accept messages, and therefore the bulk of RADIUS attributes includable within the RADIUS sub-element are those that may be included within an Access-Accept, as described in [4]-[6]. There are two exceptions: the Acct-Authentic and Acct-Multi-SessionId accounting attributes. The attributes allowable for use with transfers of IEEE 802.1X context are described in Appendix A.

Acct-Authentic encodes the authentication technique utilized on the old access point: RADIUS, Local or Remote. A value of RADIUS denotes authentication against a backend RADIUS server; Local means that the user authenticated against the local database on the old device; Remote means that a AAA protocol other than RADIUS was used.

Typically, it does not make sense to transfer context of sessions established by local authentication. This violates the Equivalency Principle because context established via local authentication will not in general be the same as the context that would be established by carrying out a conversation with the AAA server. In order to guard against inappropriate context transfers, the new device SHOULD examine the authentication status prior to deciding to accept the context transfer.

Acct-Multi-SessionId enables linkage of accounting records from related sessions. As described in [24], it is possible to maintain the same Acct-Multi-SessionId as a user moves between devices. To enable this, it is necessary to include the Acct-Multi-SessionId in the context transfer.

B.5 Security considerations

B.5.1 Trust issues

Implicit within our context transfer model is trust between devices engaging in a context transfer. Since the new device will act on the context transfer as though it had been given the service instructions by a trusted AAA server, it is necessary for the new device to trust the old device.

In transfer of context across administrative domains, such a level of trust may not be possible or appropriate. Therefore, it is possible for context transfer to fail even in situations where the devices are homogeneous, due to lack of trust between administrative domains.

Another implication of the "Equivalency Principle" is that the context transfer protocol SHOULD provide the same level of security as the AAA protocol whose context is being transferred. For example, where the AAA protocol is using IPsec to provide confidentiality, it does not make sense for the context transfer protocol to use shared secret-based hiding. B.5.2 Confidentiality

AAA protocol messages may include attributes requiring confidentiality. This includes user passwords, encryption keys, or tunnel passwords. In order to transfer these attributes securely, confidentiality is required. Following the Equivalency Principle, attributes are processed as though they came from the AAA server. This includes security processing. As a result, existing AAA security mechanisms are used in order to ensure confidentiality.

This can be accomplished in two ways. As described in [4], RADIUS attributes can be encrypted using the shared secret shared by the new device and the AAA server. Alternatively, if IPsec is supported, encapsulating security payload (ESP) with a non-null transform can be used to provide confidentiality, as described in [23]. In this case, if a shared secret does not exist, then a null shared secret is assumed.

B.6 References

[1] Blunk, L., Vollbrecht, J., "PPP Extensible Authentication Protocol (EAP)", RFC 2284, March 1998.

[2] Rivest, R., Dusse, S., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.

[3] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, March, 1997.

[4] Rigney, C., Rubens, A., Simpson, W., Willens, S., "Remote Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

[5] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[6] Rigney, C., Willats, W., Calhoun, P., "RADIUS Extensions", RFC 2869, June 2000.

[7] IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture, ANSI/IEEE Std 802, 1990.

[8] ISO/IEC 10038 Information technology - Telecommunications and information exchange between systems - Local area networks – Media Access Control (MAC) Bridges, (also ANSI/IEEE Std 802.1D- 1993), 1993.

[9] ISO/IEC Final CD 15802-3 Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Common specifications - Part 3:Media Access Control (MAC) bridges, (current draft available as IEEE P802.1D/D15).
[10] IEEE Standards for Local and Metropolitan Area Networks: Draft Standard for Virtual Bridged Local Area Networks, P802.1Q/D8, January 1998.

[11] ISO/IEC 8802-3 Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Common specifications - Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, (also ANSI/IEEE Std 802.3- 1996), 1996.

[12] IEEE Standards for Local and Metropolitan Area Networks: Demand Priority Access Method, Physical Layer and Repeater Specification For 100 Mb/s Operation, IEEE Std 802.12-1995.

[13] IEEE Standards for Local and Metropolitan Area Networks: Port based Network Access Control, IEEE Draft 802.1X/D11, March 2001.

[14] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[15] Yergeau, F., "UTF-8, a transformation format of Unicode and ISO 10646", RFC 2044, October 1996.

[16] Aboba, B., Beadles, M., "The Network Access Identifier", RFC 2486, January 1999.

[17] Alvestrand, H. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

[18] Dobbertin, H., "The Status of MD5 After a Recent Attack." CryptoBytes Vol.2 No.2, Summer 1996.

[19] Atkinson, R., "Security Architecture for the Internet Protocol", RFC 1825, August 1995.
[20] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege, M., Goyret, I., "RADIUS Attributes for Tunnel Protocol Support", RFC 2868, June 2000.

[21] Zorn, G., Mitton, D., Aboba, B., "RADIUS Accounting Modifications for Tunnel Protocol Support", RFC 2867, June 2000.

[22] Information technology - Telecommunications and information exchange between systems
 - Local and metropolitan area networks - Specific Requirements Part 11: Wireless LAN
 Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11-

1997, 1997.

[23] Aboba, B., Zorn, G., Mitton, D., "RADIUS and IPv6", Internet draft (work in progress), draft-aboba-radius-ipv6-10.txt, June 2001.

[24] Congdon, P., Et al. "IEEE 802.1X Usage Guidelines", Internet draft (work in progress), draft-congdon-radius-8021x-15.txt, July 2001.

[25] Calhoun, P., Akhtar, H., Arkko, J., Guttman, E., Rubens, A., Zorn, G., draft-ietf-aaadiameter-08.txt, November 2001

[26] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, A. Sastry, "The COPS (Common Open Policy Service) Protocol", RFC 2748, January 2000

Appendix A - Table of Attributes

The following table provides a guide to which attributes are sent and received as part of IEEE 802.1X authentication, and which attributes are considered part of the "context" to be transferred during roaming. L3 denotes attributes that will be understood only by switches or access points implementing Layer 3 capabilities.

802.1X	Context	#	Attribute
Х	X	1	User-Name [4]
		2	User-Password [4]
		3	CHAP-Password [4]
Х		4	NAS-IP-Address [4]
Х		5	NAS-Port [4]
Х	Х	6	Service-Type [4]
		7	Framed-Protocol [4]
		8	Framed-IP-Address [4]
		9	Framed-IP-Netmask [4]
L3	Х	10	Framed-Routing [4]

802.1X	Context	#	Attribute
Х	X	11	Filter-Id [4]
Х	X	12	Framed-MTU [4]
		13	Framed-Compression [4]
		14	Login-IP-Host [4]
		15	Login-Service [4]
		16	Login-TCP-Port [4]
Х	X	18	Reply-Message [4]
		19	Callback-Number [4]
		20	Callback-Id [4]
L3	X	22	Framed-Route [4]
L3	X	23	Framed-IPX-Network [4]
Х	X	24	State [4]
Х	X	25	Class [4]
Х	X	26	Vendor-Specific [4]
Х	X	27	Session-Timeout [4]
Х	X	28	Idle-Timeout [4]
Х	X	29	Termination-Action [4]
Х		30	Called-Station-Id [4]
Х		31	Calling-Station-Id [4]
Х		32	NAS-Identifier [4]
Х		33	Proxy-State [4]
		34	Login-LAT-Service [4]
		35	Login-LAT-Node [4]
		36	Login-LAT-Group [4]
L3	X	37	Framed-AppleTalk-Link [4]
L3	X	38	Framed-AppleTalk-Network [4]
L3	X	39	Framed-AppleTalk-Zone [4]
Х		40	Acct-Status-Type [5]
Х		41	Acct-Delay-Time [5]
Х		42	Acct-Input-Octets [5]
Х		43	Acct-Output-Octets [5]
Х		44	Acct-Session-Id [5]
Х	X	45	Acct-Authentic [5]
Х		46	Acct-Session-Time [5]
Х		47	Acct-Input-Packets [5]
Х		48	Acct-Output-Packets [5]
Х		49	Acct-Terminate-Cause [5]
Х	Х	50	Acct-Multi-Session-Id [5]
		51	Acct-Link-Count [5]
Х		52	Acct-Input-Gigawords [6]
Х		53	Acct-Output-Gigawords [6]
Х		55	Event-Timestamp [6]

802.1X	Context	#	Attribute
		60	CHAP-Challenge [4]
Х	X	61	NAS-Port-Type [4]
		62	Port-Limit [4]
		63	Login-LAT-Port [4]
Х	X	64	Tunnel-Type [20]
Х	X	65	Tunnel-Medium-Type [20]
L3	X	66	Tunnel-Client-Endpoint [20]
L3	X	67	Tunnel-Server-Endpoint [20]
L3	X	68	Acct-Tunnel-Connection [21]
L3	X	69	Tunnel-Password [20]
		70	ARAP-Password [6]
		71	ARAP-Features [6]
		72	ARAP-Zone-Access [6]
		73	ARAP-Security [6]
		74	ARAP-Security-Data [6]
		75	Password-Retry [6]
		76	Prompt [6]
Х		77	Connect-Info [6]
Х		78	Configuration-Token [6]
Х		79	EAP-Message [6]
Х		80	Message-Authenticator [6]
Х	X	81	Tunnel-Private-Group-ID [20]
L3	X	82	Tunnel-Assignment-ID [20]
Х	X	83	Tunnel-Preference [20]
		84	ARAP-Challenge-Response [6]
Х		85	Acct-Interim-Interval [6]
Х		86	Acct-Tunnel-Packets-Lost [21]
Х		87	NAS-Port-Id [6]
		88	Framed-Pool [6]
L3	X	90	Tunnel-Client-Auth-ID [20]
L3	X	91	Tunnel-Server-Auth-ID [20]
Х		TBD	NAS-IPv6-Address [23]
		TBD	Framed-Interface-Id [23]
L3	Х	TBD	Framed-IPv6-Prefix [23]
		TBD	Login-IPv6-Host [23]
L3	Х	TBD	Framed-IPv6-Route [23]
L3	Х	TBD	Framed-IPv6-Pool [23]

Key

802.1X =Allowed for use with IEEE 802.1X

Context = Transferred during roaming if available

L3 = implemented only on switches/access points with Layer 3 capabilities